Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum textures of the many-body wavefunctions in magic-angle graphene

Abstract

Interactions among electrons create novel many-body quantum phases of matter with wavefunctions that reflect electronic correlation effects, broken symmetries and collective excitations. Many quantum phases have been discovered in magic-angle twisted bilayer graphene (MATBG), including correlated insulating1, unconventional superconducting2,3,4,5 and magnetic topological6,7,8,9 phases. The lack of microscopic information10,11 of possible broken symmetries has hampered our understanding of these phases12,13,14,15,16,17. Here we use high-resolution scanning tunnelling microscopy to study the wavefunctions of the correlated phases in MATBG. The squares of the wavefunctions of gapped phases, including those of the correlated insulating, pseudogap and superconducting phases, show distinct broken-symmetry patterns with a √3 × √3 super-periodicity on the graphene atomic lattice that has a complex spatial dependence on the moiré scale. We introduce a symmetry-based analysis using a set of complex-valued local order parameters, which show intricate textures that distinguish the various correlated phases. We compare the observed quantum textures of the correlated insulators at fillings of ±2 electrons per moiré unit cell to those expected for proposed theoretical ground states. In typical MATBG devices, these textures closely match those of the proposed incommensurate Kekulé spiral order15, whereas in ultralow-strain samples, our data have local symmetries like those of a time-reversal symmetric intervalley coherent phase12. Moreover, the superconducting state of MATBG shows strong signatures of intervalley coherence, only distinguishable from those of the insulator with our phase-sensitive measurements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Imaging atomic-scale Kekulé patterns in MATBG.
Fig. 2: Symmetry-based order parameter decomposition and inter-Chern-sector coherence.
Fig. 3: Distinguishing correlated insulators at v = ±2 via moiré translation symmetry and IVC isospin vortices.
Fig. 4: Candidate theoretical ground states.
Fig. 5: Doping correlated insulators into superconducting and pseudogap phases.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The code that supports the findings of this study is available from the corresponding author upon reasonable request.

References

  1. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Oh, M. et al. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature 600, 240–245 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Nuckolls, K. P. et al. Strongly correlated Chern insulators in magic-angle twisted bilayer graphene. Nature 588, 610–615 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Călugăru, D. et al. Spectroscopy of twisted bilayer graphene correlated insulators. Phys. Rev. Lett. 129, 117602 (2022).

    Article  ADS  PubMed  Google Scholar 

  11. Hong, J. P., Soejima, T. & Zaletel, M. P. Detecting symmetry breaking in magic angle graphene using scanning tunneling microscopy. Phys. Rev. Lett. 129, 147001 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Kang, J. & Vafek, O. Strong coupling phases of partially filled twisted bilayer graphene narrow bands. Phys. Rev. Lett. 122, 246401 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Bultinck, N. et al. Ground state and hidden symmetry of magic-angle graphene at even integer filling. Phys. Rev. X 10, 031034 (2020).

    CAS  Google Scholar 

  14. Lian, B. et al. Twisted bilayer graphene. IV. Exact insulator ground states and phase diagram. Phys. Rev. B 103, 205414 (2021).

    Article  ADS  CAS  Google Scholar 

  15. Kwan, Y. H. et al. Kekulé spiral order at all nonzero integer fillings in twisted bilayer graphene. Phys. Rev. X 11, 041063 (2021).

    CAS  Google Scholar 

  16. Tarnopolsky, G., Kruchkov, A. J. & Vishwanath, A. Origin of magic angles in twisted bilayer graphene. Phys. Rev. Lett. 122, 106405 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Song, Z.-D. & Bernevig, B. A. Magic-angle twisted bilayer graphene as a topological heavy fermion problem. Phys. Rev. Lett. 129, 047601 (2022).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  18. Liu, X. et al. Visualizing broken symmetry and topological defects in a quantum Hall ferromagnet. Science 375, 321–326 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Coissard, A. et al. Imaging tunable quantum Hall broken-symmetry orders in graphene. Nature 605, 51–56 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Blason, A. & Fabrizio, M. Local Kekulé distortion turns twisted bilayer graphene into topological Mott insulators and superconductors. Phys. Rev. B 106, 235112 (2022).

    Article  ADS  CAS  Google Scholar 

  21. Wagner, G., Kwan, Y. H., Bultinck, N., Simon, S. H. & Parameswaran, S. A. Global phase diagram of the normal state of twisted bilayer graphene. Phys. Rev. Lett. 128, 156401 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Lake, E., Patri, A. S. & Senthil, T. Pairing symmetry of twisted bilayer graphene: a phenomenological synthesis. Phys. Rev. B 106, 104506 (2022).

    Article  ADS  CAS  Google Scholar 

  23. Khalaf, E., Chatterjee, S., Bultinck, N., Zaletel, M. P. & Vishwanath, A. Charged skyrmions and topological origin of superconductivity in magic-angle graphene. Sci. Adv. 7, eabf5299 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kozii, V., Isobe, H., Venderbos, J. W. F. & Fu, L. Nematic superconductivity stabilized by density wave fluctuations: possible application to twisted bilayer graphene. Phys. Rev. B 99, 144507 (2019).

    Article  ADS  CAS  Google Scholar 

  25. Christos, M., Sachdev, S. & Scheurer, M. S. Superconductivity, correlated insulators, and Wess–Zumino–Witten terms in twisted bilayer graphene. Proc. Natl Acad. Sci. USA 117, 29543–29554 (2020).

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  26. Wong, D. et al. A modular ultra-high vacuum millikelvin scanning tunneling microscope. Rev. Sci. Instrum. 91, 023703 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Choi, Y. et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys. 15, 1174–1180 (2019).

    Article  CAS  Google Scholar 

  29. Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Rutter, G. M. et al. Scattering and Interference in epitaxial graphene. Science 317, 219–222 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Pásztor, Á. et al. Holographic imaging of the complex charge density wave order parameter. Phys. Rev. Res. 1, 033114 (2019).

    Article  Google Scholar 

  32. Farahi, G. et al. Broken symmetries and excitation spectra of interacting electrons in partially filled Landau levels. Preprint at https://arxiv.org/abs/2303.16993 (2023).

  33. Wong, D. et al. Cascade of electronic transitions in magic-angle twisted bilayer graphene. Nature 582, 198–202 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Yu, J. et al. Spin skyrmion gaps as signatures of intervalley-coherent insulators in magic-angle twisted bilayer graphene. Preprint at https://arxiv.org/abs/2206.11304 (2022).

  35. Stepanov, P. et al. Untying the insulating and superconducting orders in magic-angle graphene. Nature 583, 375–378 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Saito, Y., Ge, J., Watanabe, K., Taniguchi, T. & Young, A. F. Independent superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys. 16, 926–930 (2020).

    Article  CAS  Google Scholar 

  37. Arora, H. S. et al. Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature 583, 379–384 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Cao, Y. et al. Nematicity and competing orders in superconducting magic-angle graphene. Science 372, 264–271 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Liu, X. et al. Tuning electron correlation in magic-angle twisted bilayer graphene using Coulomb screening. Science 371, 1261–1265 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Comin, R. & Damascelli, A. Resonant X-ray scattering studies of charge order in cuprates. Annu. Rev. Condens. Matter Phys. 7, 369–405 (2016).

    Article  ADS  CAS  Google Scholar 

  41. Wu, S., Zhang, Z., Watanabe, K., Taniguchi, T. & Andrei, E. Y. Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene. Nat. Mater. 20, 488–494 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Saito, Y. et al. Hofstadter subband ferromagnetism and symmetry-broken Chern insulators in twisted bilayer graphene. Nat. Phys. 17, 478–481 (2021).

    Article  CAS  Google Scholar 

  43. Devakul, T., Crépel, V., Zhang, Y. & Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xie, Y.-M., Zhang, C.-P. & Law, K. T. Topological px + ipy inter-valley coherent state in moiré MoTe2/WSe2 heterobilayers. Preprint at https://arxiv.org/abs/2206.11666 (2022).

  45. Natterer, F. D. et al. Strong asymmetric charge carrier dependence in inelastic electron tunneling spectroscopy of graphene phonons. Phys. Rev. Lett. 114, 245502 (2015).

    Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank O. Vafek, X. Liu, C.-L. Chiu and G. Farahi for discussions; and H. Ding for technical discussion. This work was primarily supported by the Gordon and Betty Moore Foundation’s EPiQS initiative grants GBMF9469 and DOE-BES grant DE-FG02-07ER46419 to A.Y. Other support for the experimental work was provided by NSF-MRSEC through the Princeton Center for Complex Materials NSF-DMR- 2011750, NSF-DMR-1904442, ARO MURI (W911NF-21-2-0147) and ONR N00012-21-1-2592. T.S. was supported by a fellowship from the Masason Foundation, and by the US Department of Energy, Office of Science, National Quantum Information Science Research Centers, Quantum Systems Accelerator. J.P.H. was supported by the Princeton University Department of Physics. M.P.Z. was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under contract no. DE-AC02-05CH11231, within the van der Waals Heterostructures Program (KCWF16), and the Alfred P. Sloan Foundation. D.C., B.A.B. and N.R. were supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 101020833), the ONR grant no. N00014-20-1-2303, Simons Investigator grant no. 404513, the Gordon and Betty Moore Foundation through the EPiQS Initiative, grant no. GBMF11070 and grant no. GBMF8685, NSF-MRSEC grant no. DMR-2011750, BSF Israel US foundation grant no. 2018226, and the Princeton Global Network Funds. J.H.-A. was supported by a Hertz Fellowship. N.R. acknowledges support from the QuantERA II Programme that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 101017733. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, grant JPMXP0112101001, JSPS KAKENHI grants 19H05790 and JP20H00354.

Author information

Authors and Affiliations

Authors

Contributions

K.P.N., R.L.L., M.O., D.W. and A.Y. designed the experiment. D.W., K.P.N., M.O. and R.L.L. fabricated the devices used for the study. M.O., R.L.L., K.P.N. and D.W. carried out STM and STS measurements. T.S., J.P.H. and M.P.Z. designed the order parameter decomposition scheme and built the software suite capable of performing this decomposition on STM data, with input from all authors. R.L.L., D.W., K.P.N. and M.O. performed the data analysis using this software suite and maintained the code. T.S., J.P.H., D.C. and J.H.-A. performed simulations of the LDOS of candidate insulating ground states under the guidance of B.A.B., N.R. and M.P.Z. K.W. and T.T. synthesized the hBN crystals. All authors discussed the results and contributed to the writing of the paper.

Corresponding author

Correspondence to Ali Yazdani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Peter Nemes-Incze, Xiao Yan Xu and Long-Jing Yin for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuckolls, K.P., Lee, R.L., Oh, M. et al. Quantum textures of the many-body wavefunctions in magic-angle graphene. Nature 620, 525–532 (2023). https://doi.org/10.1038/s41586-023-06226-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06226-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing