Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Harnessing a paper-folding mechanism for reconfigurable DNA origami

Abstract

The paper-folding mechanism has been widely adopted in building of reconfigurable macroscale systems because of its unique capabilities and advantages in programming variable shapes and stiffness into a structure1,2,3,4,5. However, it has barely been exploited in the construction of molecular-level systems owing to the lack of a suitable design principle, even though various dynamic structures based on DNA self-assembly6,7,8,9 have been developed10,11,12,13,14,15,16,17,18,19,20,21,22,23. Here we propose a method to harness the paper-folding mechanism to create reconfigurable DNA origami structures. The main idea is to build a reference, planar wireframe structure24 whose edges follow a crease pattern in paper folding so that it can be folded into various target shapes. We realized several paper-like folding and unfolding patterns using DNA strand displacement25 with high yield. Orthogonal folding, repeatable folding and unfolding, folding-based microRNA detection and fluorescence signal control were demonstrated. Stimuli-responsive folding and unfolding triggered by pH or light-source change were also possible. Moreover, by employing hierarchical assembly26 we could expand the design space and complexity of the paper-folding mechanism in a highly programmable manner. Because of its high programmability and scalability, we expect that the proposed paper-folding-based reconfiguration method will advance the development of complex molecular systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Paper-folding mechanism for reconfigurable DNA origami.
Fig. 2: Programming various folding patterns on a DNA wireframe paper.
Fig. 3: Optimization of folding yield.
Fig. 4: Folding properties.
Fig. 5: Environmental folding control by pH and light illumination.
Fig. 6: Programmable larger-size folding with a polymeric DNA paper.

Similar content being viewed by others

Data availability

All relevant data are included in the paper and Supplementary Information. Source data are provided with this paper.

Code availability

All relevant code is available from the corresponding author on request.

References

  1. Freeland, R., Bilyeu, G., Veal, G., Steiner, M. & Carson, D. Large inflatable deployable antenna flight experiment results. Acta Astronaut. 41, 267–277 (1997).

    Article  ADS  Google Scholar 

  2. Pesenti, M., Masera, G. & Fiorito, F. Exploration of adaptive origami shading concepts through integrated dynamic simulations. J. Archit. Eng. 24, 04018022 (2018).

  3. Lee, D.-Y., Kim, J.-K., Sohn, C.-Y., Heo, J.-M. & Cho, K.-J. High–load capacity origami transformable wheel. Sci. Robot. 6, eabe0201 (2021).

    Article  PubMed  Google Scholar 

  4. Meloni, M. et al. Engineering origami: a comprehensive review of recent applications, design methods, and tools. Adv. Sci. 8, 2000636 (2021).

    Article  Google Scholar 

  5. Wu, S. et al. Stretchable origami robotic arm with omnidirectional bending and twisting. Proc. Natl Acad. Sci. USA 118, e2110023118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Castro, C. E. et al. A primer to scaffolded DNA origami. Nat. Methods 8, 221–229 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Lavella, G. J., Jadhav, A. D. & Maharbiz, M. M. A synthetic chemomechanical machine driven by ligand–receptor bonding. Nano Lett. 12, 4983–4987 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Liu, M. et al. A DNA tweezer-actuated enzyme nanoreactor. Nat. Commun. 4, 2127 (2013).

    Article  ADS  PubMed  Google Scholar 

  12. Chen, H. et al. Understanding the mechanical properties of DNA origami tiles and controlling the kinetics of their folding and unfolding reconfiguration. J. Am. Chem. Soc. 136, 6995–7005 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, X., Lu, C.-H. & Willner, I. Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines. Acc. Chem. Res. 47, 1673–1680 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Zhou, L., Marras, A. E., Su, H.-J. & Castro, C. E. DNA origami compliant nanostructures with tunable mechanical properties. ACS Nano 8, 27–34 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Marras, A. E., Zhou, L., Su, H.-J. & Castro, C. E. Programmable motion of DNA origami mechanisms. Proc. Natl Acad. Sci. USA 112, 713–718 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhan, P. et al. Reconfigurable three-dimensional gold nanorod plasmonic nanostructures organized on DNA origami tripod. ACS Nano 11, 1172–1179 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee, C., Lee, J. Y. & Kim, D.-N. Polymorphic design of DNA origami structures through mechanical control of modular components. Nat. Commun. 8, 2067 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  18. Grossi, G., Dalgaard Ebbesen Jepsen, M., Kjems, J. & Andersen, E. S. Control of enzyme reactions by a reconfigurable DNA nanovault. Nat. Commun. 8, 992 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  19. Marras, A. E. et al. Cation-activated avidity for rapid reconfiguration of DNA nanodevices. ACS Nano 12, 9484–9494 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Zhou, L., Marras, A. E., Huang, C. M., Castro, C. E. & Su, H. J. Paper origami‐inspired design and actuation of DNA nanomachines with complex motions. Small 14, 1802580 (2018).

    Article  Google Scholar 

  21. Selnihhin, D., Sparvath, S. M., Preus, S., Birkedal, V. & Andersen, E. S. Multifluorophore DNA origami beacon as a biosensing platform. ACS Nano 12, 5699–5708 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Ijäs, H., Hakaste, I., Shen, B., Kostiainen, M. A. & Linko, V. Reconfigurable DNA origami nanocapsule for pH-controlled encapsulation and display of cargo. ACS Nano 13, 5959–5967 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Goetzfried, M. A. et al. Periodic operation of a dynamic DNA origami structure utilizing the hydrophilic–hydrophobic phase‐transition of stimulus‐sensitive polypeptides. Small 15, 1903541 (2019).

    Article  CAS  Google Scholar 

  24. Jun, H. et al. Autonomously designed free-form 2D DNA origami. Sci. Adv. 5, eaav0655 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Tikhomirov, G., Petersen, P. & Qian, L. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature 552, 67–71 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Wagenbauer, K. F., Sigl, C. & Dietz, H. Gigadalton-scale shape-programmable DNA assemblies. Nature 552, 78–83 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Minev, D., Wintersinger, C. M., Ershova, A. & Shih, W. M. Robust nucleation control via crisscross polymerization of highly coordinated DNA slats. Nat. Commun. 12, 1741 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pumm, A.-K. et al. A DNA origami rotary ratchet motor. Nature 607, 492–498 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sigl, C. et al. Programmable icosahedral shell system for virus trapping. Nat. Mater. 20, 1281–1289 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Petersen, P., Tikhomirov, G. & Qian, L. Information-based autonomous reconfiguration in systems of interacting DNA nanostructures. Nat. Commun. 9, 5362 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, J. Y. et al. Rapid computational analysis of DNA origami assemblies at near-atomic resolution. ACS Nano 15, 1002–1015 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Lee, J. Y., Kim, M., Lee, C. & Kim, D.-N. Characterizing and harnessing the mechanical properties of short single-stranded DNA in structured assemblies. ACS Nano 15, 20430–20441 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Lee, J. G., Kim, K. S., Lee, J. Y. & Kim, D.-N. Predicting the free-form shape of structured DNA assemblies from their lattice-based design blueprint. ACS Nano 16, 4289–4297 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Kim, D.-N., Kilchherr, F., Dietz, H. & Bathe, M. Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Res. 40, 2862–2868 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Lee, C., Kim, K. S., Kim, Y.-J., Lee, J. Y. & Kim, D.-N. Tailoring the mechanical stiffness of DNA nanostructures using engineered defects. ACS Nano 13, 8329–8336 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Lee, C., Kim, Y.-J., Kim, K. S., Lee, J. Y. & Kim, D.-N. Modulating the chemo-mechanical response of structured DNA assemblies through binding molecules. Nucleic Acids Res. 49, 12591–12599 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, Y.-J., Park, J., Lee, J. Y. & Kim, D.-N. Programming ultrasensitive threshold response through chemomechanical instability. Nat. Commun. 12, 5177 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wagenbauer, K. F. et al. How we make DNA origami. ChemBioChem 18, 1873–1885 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Chandrasekaran, A. R. & Halvorsen, K. DNA-based smart reagent for detecting Alzheimer’s associated MicroRNAs. ACS Sens. 6, 3176–3181 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou, Z. et al. Triggered dimerization and trimerization of DNA tetrahedra for multiplexed miRNA detection and imaging of cancer cells. Small 17, 2007355 (2021).

    Article  CAS  Google Scholar 

  42. Hariadi, R. F., Yurke, B. & Winfree, E. Thermodynamics and kinetics of DNA nanotube polymerization from single-filament measurements. Chem. Sci. 6, 2252–2267 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zenk, J., Tuntivate, C. & Schulman, R. Kinetics and thermodynamics of Watson–Crick base pairing driven DNA origami dimerization. J. Am. Chem. Soc. 138, 3346–3354 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Idili, A., Vallée-Bélisle, A. & Ricci, F. Programmable pH-triggered DNA nanoswitches. J. Am. Chem. Soc. 136, 5836–5839 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Yang, Y., Endo, M., Hidaka, K. & Sugiyama, H. Photo-controllable DNA origami nanostructures assembling into predesigned multiorientational patterns. J. Am. Chem. Soc. 134, 20645–20653 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Kuzyk, A. et al. A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function. Nat. Commun. 7, 10591 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, X., Jun, H. & Bathe, M. Programming 2D supramolecular assemblies with wireframe DNA origami. J. Am. Chem. Soc. 144, 4403–4409 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Gerling, T., Wagenbauer, K. F., Neuner, A. M. & Dietz, H. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347, 1446–1452 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Papoulis, A. & Pillai, S. U. Probability, Random Variables, and Stochastic Processes (Tata McGraw-Hill Education, 2002).

  51. Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Persat, A., Chambers, R. D. & Santiago, J. G. Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part I: acid–base equilibria and pH buffers. Lab. Chip 9, 2437–2453 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Liang, X., Mochizuki, T. & Asanuma, H. A supra‐photoswitch involving sandwiched DNA base pairs and azobenzenes for light‐driven nanostructures and nanodevices. Small 5, 1761–1768 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Yao, G. et al. Meta-DNA structures. Nat. Chem. 12, 1067–1075 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Park for advice on AFM measurement. This research was supported by the National Convergence Research of Scientific Challenges through the National Research Foundation of Korea funded by the Ministry of Science and ICT (no. NRF-2020M3F7A1094299).

Author information

Authors and Affiliations

Authors

Contributions

M.K. and D.-N.K. conceived the idea. M.K. and C.L. designed experiments and analysed data. M.K. synthesized DNA wireframe nanostructures. M.K., Y.K. and K.J. conducted fluorescence measurements. M.K. and K.J. performed stimuli-responsive experiments. H.K. and M.C. supported the experimental setup for light irradiation. J.Y.L., M.K. and J.G.L. performed finite element analysis of structures. M.K., K.J., J.Y.L. and D.-N.K. wrote the manuscript.

Corresponding author

Correspondence to Do-Nyun Kim.

Ethics declarations

Competing interests

D.-N.K. and M.K. are co-inventors on a provisional patent application related to this work filed by Seoul National University R&DB Foundation (no. KR10-2021-0167625, filed 29 November 2021).

Peer review

Peer review information

Nature thanks Maartje Bastings and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Synthesis of square DNA wireframe paper.

a, Gel electrophoresis with Ethidium-Bromide stained 1.5wt% agarose gels for 90 min at 75 V by varying the cationic concentration. 12 mM MgCl2 (white box) was used to synthesize square DNA wireframe papers (SQ). b, Representative AFM images of SQ annealed with 12 mM MgCl2 condition. Scale bars, 500 nm and 100 nm.

Extended Data Fig. 2 Detailed crease patterns of SQ folding.

Sky-blue & blue and pink- & yellow-colored edges indicate the DNA wireframe edges with 3′ and 5′ crease handles that could bind with glue1 (G1) and glue2 (G2) strands, respectively. The downward and upward directions of crease handles represent the mountain and valley fold, respectively.

Extended Data Fig. 3 Exemplary AFM images of SQ folding.

Schematic illustration of folded shapes and AFM images. Scale bars, 100 nm.

Extended Data Fig. 4 The procedure of estimating folding yield based on AFM images.

a, Process of estimating the folding yield with an example of SQ (Q1). All particles in the raw AFM image (left) were systematically numbered (middle), filtered depending on their size to remove aggregated particles, and renumbered using customized MATLAB codes (right). Scale bars, 1 μm. b, Partially displayed or irregularly shaped particles were excluded from the yield estimation (red diagonal cancel lines). Individual images with white and red numbers indicate the monomers with intended and unintended shapes, respectively. Scale bar, 100 nm.

Extended Data Fig. 5 Multi-channel miRNA assay through foldable DNA wireframe paper.

a, Schematic illustration of multi-channel miRNA assay using foldable DNA origami. b, Monomer fraction and representative AFM image of each state. Detailed sequence and process to estimate the standard errors are described in Supplementary Table 1. Each sample size is denoted as N. Scale bars, 200 nm.

Extended Data Fig. 6 Larger-size programmable folding system.

a, Schematic illustration of hierarchical assembly of monomeric DNA papers and a folding matrix. b, Modular folding patterns and corresponding numbers. c, Considering the rotation symmetry, 35 cases of larger-size folding systems could be programmed based on a polymeric DNA paper (ABCD) in total.

Extended Data Fig. 7 Detailed crease patterns of larger-scale folding.

Pink- and yellow-colored edges indicate the DNA wireframe edges with 3′ and 5′ crease handles, respectively.

Extended Data Fig. 8 Exemplary AFM images of larger-size folding.

a–j, Exemplary AFM images of diamond (v2), rectangular, right triangle, heart, square, omnibus, ellipse, octagon, house, and open envelope, respectively. Detailed crease patterns are described in Extended Data Fig. 7. Scale bars, 100 nm.

Extended Data Fig. 9 Exemplary procedure of estimating tetramer folding yield based on AFM measurements.

a, Crease pattern and expected configuration of octagon folding after adding glue strands (green arrow). b, Exemplary AFM images of an octagon folding of a larger-size DNA paper. The tetramer folding yield is measured as the number of tetramers with intended folding shapes over the total number of tetramers in AFM images. Individual images with green numbers (right bottom) indicate the successfully folded larger-size DNA papers. Scale bar, 200 nm.

Extended Data Fig. 10 Tetramer folding yield of larger-size DNA papers.

Predicted (gray) and experimentally measured (sky-blue) tetramer folding yield of larger-size DNA papers (Extended Data Fig. 9 and Supplementary Table 7). Each sample size is denoted as N. Standard errors are plotted as in Fig. 3.

Supplementary information

Supplementary Information

This PDF file contains Supplementary notes on the structural design, mechanical analysis, kinetic model, pH adjustment and cooperative folding of DNA wireframe structures; figures for detailed experimental designs and results with finite element simulation; and tables for quantitative data on folding yields, simulation parameters and staple sequences.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Lee, C., Jeon, K. et al. Harnessing a paper-folding mechanism for reconfigurable DNA origami. Nature 619, 78–86 (2023). https://doi.org/10.1038/s41586-023-06181-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06181-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing