Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plastic debris in lakes and reservoirs

Abstract

Plastic debris is thought to be widespread in freshwater ecosystems globally1. However, a lack of comprehensive and comparable data makes rigorous assessment of its distribution challenging2,3. Here we present a standardized cross-national survey that assesses the abundance and type of plastic debris (>250 μm) in freshwater ecosystems. We sample surface waters of 38 lakes and reservoirs, distributed across gradients of geographical position and limnological attributes, with the aim to identify factors associated with an increased observation of plastics. We find plastic debris in all studied lakes and reservoirs, suggesting that these ecosystems play a key role in the plastic-pollution cycle. Our results indicate that two types of lakes are particularly vulnerable to plastic contamination: lakes and reservoirs in densely populated and urbanized areas and large lakes and reservoirs with elevated deposition areas, long water-retention times and high levels of anthropogenic influence. Plastic concentrations vary widely among lakes; in the most polluted, concentrations reach or even exceed those reported in the subtropical oceanic gyres, marine areas collecting large amounts of debris4. Our findings highlight the importance of including lakes and reservoirs when addressing plastic pollution, in the context of pollution management and for the continued provision of lake ecosystem services.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concentration and features of plastics identified in the 38 lakes and reservoirs.
Fig. 2: Relationship of plastic concentration and features with environmental and anthropogenic drivers.

Data availability

The datasets generated and/or analysed during this study are available in the Zenodo repository, https://doi.org/10.5281/zenodo.7824882 .

References

  1. Rochman, C. M. & Hoellein, T. The global odyssey of plastic pollution. Science 368, 1184–1185 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Hartmann, N. B. et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 53, 1039–1047 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Guo, Z. et al. Global meta-analysis of microplastic contamination in reservoirs with a novel framework. Water Res. 207, 117828 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Courtene-Jones, W., van Gennip, S., Penicaud, J., Penn, E. & Thompson, R. C. Synthetic microplastic abundance and composition along a longitudinal gradient traversing the subtropical gyre in the North Atlantic Ocean. Mar. Pollut. Bull. 185, 114371 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The global threat from plastic pollution. Science 373, 61–65 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Waldschläger, K., Lechthaler, S., Stauch, G. & Schüttrumpf, H. The way of microplastic through the environment – application of the source-pathway-receptor model. Sci. Total Environ. 713, 136584 (2020).

    Article  ADS  PubMed  Google Scholar 

  7. Talbot, R. & Chang, H. Microplastics in freshwater: a global review of factors affecting spatial and temporal variations. Environ. Pollut. 292, 118393 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E. & Svendsen, C. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 586, 127–141 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Ockenden, A., Tremblay, L. A., Dikareva, N. & Simon, K. S. Towards more ecologically relevant investigations of the impacts of microplastic pollution in freshwater ecosystems. Sci. Total Environ. 792, 148507 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Blettler, M. C. M., Abrial, E., Khan, F. R., Sivri, N. & Espinola, L. A. Freshwater plastic pollution: recognizing research biases and identifying knowledge gaps. Water Res. 143, 416–424 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Li, C., Busquets, R. & Campos, L. C. Assessment of microplastics in freshwater systems: a review. Sci. Total Environ. 707, 135578 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mantzouki, E. et al. Snapshot surveys for lake monitoring, more than a shot in the dark. Front. Ecol. Evol. 6, 201 (2018).

    Article  ADS  Google Scholar 

  14. Kedzierski, M. et al. Microplastics in Mediterranean Sea: a protocol to robustly assess contamination characteristics. PLoS One 14, e0212088 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eriksen, M., Thiel, M. & Lebreton, L. in Hazardous Chemicals Associated with Plastics in the Marine Environment (eds Takada, H. & Karapanagioti, H. K.) 135–162 (Springer, 2017).

  16. Yuan, W., Liu, X., Wang, W., Di, M. & Wang, J. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China. Ecotoxicol. Environ. Saf. 170, 180–187 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Barrows, A. P. W., Neumann, C. A., Berger, M. L. & Shaw, S. D. Grab vs. neuston tow net: a microplastic sampling performance comparison and possible advances in the field. Anal. Methods 9, 1446–1453 (2017).

    Article  CAS  Google Scholar 

  18. Free, C. M. et al. High-levels of microplastic pollution in a large, remote, mountain lake. Mar. Pollut. Bull. 85, 156–163 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Deng, C. et al. Impacts of underwater topography on the distribution of microplastics in lakes: a case from Dianchi Lake, China. Sci. Total Environ. 837, 155708 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Brahney, J., Hallerud, M., Heim, E., Hahnenberger, M. & Sukumaran, S. Plastic rain in protected areas of the United States. Science 368, 1257–1260 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Carney Almroth, B. M. et al. Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment. Environ. Sci. Pollut. Res. 25, 1191–1199 (2018).

    Article  CAS  Google Scholar 

  22. Napper, I. E. & Thompson, R. C. Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions. Mar. Pollut. Bull. 112, 39–45 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Gao, F. et al. The seasonal distribution characteristics of microplastics on bathing beaches along the coast of Qingdao, China. Sci. Total Environ. 783, 146969 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Shim, W. J., Hong, S. H. & Eo, S. in Microplastic Contamination in Aquatic Environments: An Emerging Matter of Environmental Urgency (ed. Zeng, E. Y.) 1–26 (Elsevier, 2018).

  25. Waldman, W. R. & Rillig, M. C. Microplastic research should embrace the complexity of secondary particles. Environ. Sci. Technol. 54, 7751–7753 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schmaltz, E. et al. Plastic pollution solutions: emerging technologies to prevent and collect marine plastic pollution. Environ. Int. 144, 106067 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Frydkjær, C. K., Iversen, N. & Roslev, P. Ingestion and egestion of microplastics by the Cladoceran Daphnia magna: effects of regular and irregular shaped plastic and sorbed phenanthrene. Bull. Environ. Contam. Toxicol. 99, 655–661 (2017).

    Article  PubMed  Google Scholar 

  28. Botterell, Z. L. R. et al. Bioavailability of microplastics to marine zooplankton: effect of shape and infochemicals. Environ. Sci. Technol. 54, 12024–12033 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Ziajahromi, S., Kumar, A., Neale, P. A. & Leusch, F. D. L. Impact of microplastic beads and fibers on waterflea (Ceriodaphnia dubia) survival, growth, and reproduction: implications of single and mixture exposures. Environ. Sci. Technol. 51, 13397–13406 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Mehinto, A. C. et al. Risk-based management framework for microplastics in aquatic ecosystems. Microplast. Nanoplast. 2, 17 (2022).

    Article  ADS  Google Scholar 

  31. Santos, R. G., Andrades, R., Fardim, L. M. & Martins, A. S. Marine debris ingestion and Thayer’s law – the importance of plastic color. Environ. Pollut. 214, 585–588 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Lusher, A. L., Bråte, I. L. N., Munno, K., Hurley, R. R. & Welden, N. A. Is it or isn’t it: the importance of visual classification in microplastic characterization. Appl. Spectrosc. 74, 1139–1153 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Martí, E. et al. The colors of the ocean plastics. Environ. Sci. Technol. 54, 6594–6601 (2020).

    Article  ADS  PubMed  Google Scholar 

  34. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  35. Erni-Cassola, G., Zadjelovic, V., Gibson, M. I. & Christie-Oleza, J. A. Distribution of plastic polymer types in the marine environment; a meta-analysis. J. Hazard. Mater. 369, 691–698 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Dusaucy, J., Gateuille, D., Perrette, Y. & Naffrechoux, E. Microplastic pollution of worldwide lakes. Environ. Pollut. 284, 117075 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Baldwin, A. K., Corsi, S. R. & Mason, S. A. Plastic debris in 29 Great Lakes tributaries: relations to watershed attributes and hydrology. Environ. Sci. Technol. 50, 10377–10385 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Tanentzap, A. J. et al. Microplastics and anthropogenic fibre concentrations in lakes reflect surrounding land use. PLoS Biol. 19, e3001389 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dikareva, N. & Simon, K. S. Microplastic pollution in streams spanning an urbanisation gradient. Environ. Pollut. 250, 292–299 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Jenny, J.-P. et al. Scientists’ warning to humanity: rapid degradation of the world’s large lakes. J. Great Lakes Res. 46, 686–702 (2020).

    Article  Google Scholar 

  41. Jassby, A. D., Goldman, C. R., Reuter, J. E., Richards, R. C. & Heyvaert, A. C. in The Great Lakes of the World (GLOW): Food-Web, Health and Integrity (eds Munawar, M. & Hecky, R. E.) 431–454 (Michigan State Univ. Press, 2001).

  42. Windsor, F. M. et al. A catchment-scale perspective of plastic pollution. Glob. Change Biol. 25, 1207–1221 (2019).

    Article  ADS  Google Scholar 

  43. Royer, S.-J., Ferrón, S., Wilson, S. T. & Karl, D. M. Production of methane and ethylene from plastic in the environment. PLoS One 13, e0200574 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sheridan, E. A. et al. Plastic pollution fosters more microbial growth in lakes than natural organic matter. Nat. Commun. 13, 4175 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Woolway, R. I. et al. Global lake responses to climate change. Nat. Rev. Earth Environ. 1, 388–403 (2020).

    Article  ADS  Google Scholar 

  46. Dugan, H. A. et al. Salting our freshwater lakes. Proc. Natl Acad. Sci. 114, 4453–4458 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vadeboncoeur, Y. et al. Blue waters, green bottoms: benthic filamentous algal blooms are an emerging threat to clear lakes worldwide. Bioscience 71, 1011–1027 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. GESAMP. Guidelines for the Monitoring and Assessment of Plastic Litter and Microplastics in the Ocean (United Nations Environment Programme (UNEP), 2019).

  49. Wiggin, K. J. & Holland, E. B. Validation and application of cost and time effective methods for the detection of 3–500 μm sized microplastics in the urban marine and estuarine environments surrounding Long Beach, California. Mar. Pollut. Bull. 143, 152–162 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Zhao, S., Danley, M., Ward, J. E., Li, D. & Mincer, T. J. An approach for extraction, characterization and quantitation of microplastic in natural marine snow using Raman microscopy. Anal. Methods 9, 1470–1478 (2017).

    Article  CAS  Google Scholar 

  51. Hurley, R. R., Lusher, A. L., Olsen, M. & Nizzetto, L. Validation of a method for extracting microplastics from complex, organic-rich, environmental matrices. Environ. Sci. Technol. 52, 7409–7417 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. European Chemicals Agency (ECHA). Annex XV Restriction Report - Proposal for a Restriction (ECHA, 2019).

  53. Coffin, S. Proposed definition of ‘Microplastics in drinking water’. California Water Boards https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/docs/stffrprt_jun3.pdf (2020).

  54. Käppler, A. et al. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal. Bioanal. Chem. 408, 8377–8391 (2016).

    Article  PubMed  Google Scholar 

  55. Kazour, M., Jemaa, S., Issa, C., Khalaf, G. & Amara, R. Microplastics pollution along the Lebanese coast (Eastern Mediterranean Basin): occurrence in surface water, sediments and biota samples. Sci. Total Environ. 696, 133933 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Alfonso, M. B. et al. First evidence of microplastics in nine lakes across Patagonia (South America). Sci. Total Environ. 733, 139385 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Athey, S. N. & Erdle, L. M. Are we underestimating anthropogenic microfiber pollution? A critical review of occurrence, methods, and reporting. Environ. Toxicol. Chem. 41, 822–837 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Hutsebaut, D., Vandenabeele, P. & Moens, L. Evaluation of an accurate calibration and spectral standardization procedure for Raman spectroscopy. Analyst 130, 1204–1214 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Remigi, S., Mancini, T., Ferrando, S. & Frezzotti, M. L. Interlaboratory application of Raman CO2 densimeter equations: experimental procedure and statistical analysis using bootstrapped confidence intervals. Appl. Spectrosc. 75, 867–881 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Frezzotti, M. L. Diamond growth from organic compounds in hydrous fluids deep within the Earth. Nat. Commun. 10, 4952 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  61. Wojdyr, M. Fityk: a general-purpose peak fitting program. J. Appl. Crystallogr. 43, 1126–1128 (2010).

    Article  CAS  Google Scholar 

  62. Nava, V., Frezzotti, M. L. & Leoni, B. Raman spectroscopy for the analysis of microplastics in aquatic systems. Appl. Spectrosc. 75, 1341–1357 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  63. NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team. ASTER Global Digital Elevation Model V003. NASA EOSDIS Land Processes DAAC https://lpdaac.usgs.gov/products/astgtmv003/ (2019).

  64. Buchhorn, M. et al. Copernicus Global Land Service: Land Cover 100m: collection 3: epoch 2019: Globe. https://doi.org/10.5281/ZENODO.3939050 (2020).

  65. Center for International Earth Science Information Network - CIESIN - Columbia University. Gridded Population of the World, Version 4 (GPWv4): Administrative Unit Center Points with Population Estimates, Revision 11. https://doi.org/10.7927/H4BC3WMT (NASA Socioeconomic Data and Applications Center (SEDAC), 2020).

  66. Wildlife Conservation Society (WCS), Center for International Earth Science Information Network (CIESIN) and Columbia University. Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (Geographic). https://doi.org/10.7927/H4M61H5F (NASA Socioeconomic Data and Applications Center (SEDAC), 2005).

  67. Han, J., Kamber, M. & Pei, J. in Data Mining Concepts and Techniques 443–495 (Elsevier, 2011).

  68. Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1, 3–14 (2010).

  69. James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning with Applications in R (Springer, 2021).

  70. Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. Classification and Regression Trees (Routledge, 1984).

  71. Zuur, A. F., Ieno, E. N. & Smith, G. M. Analysing Ecological Data (Springer, 2007).

  72. Wei, T. & Simko, V. corrplot: visualization of a correlation matrix (version 0.84). R package (2017).

  73. Kassambara, A. & Mundt, F. factoextra: extract and visualize the results of multivariate data analyses. R package (2020).

  74. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  75. Therneau, T. & Atkinson, B. rpart: recursive partitioning and regression trees. R package (2022).

  76. Oksanen, J. et al. vegan: community ecology package (version 2.0-2). R package (2020).

Download references

Acknowledgements

This manuscript benefited from conversations at meetings of the Global Lake Ecological Observatory Network (GLEON; supported by funding from US NSF grants 1137327 and 1702991). This work was supported by the University of Milano-Bicocca (UNIMIB). Raman facilities were provided by the Department of Earth and Environmental Sciences (DISAT, UNIMIB) and the Interdepartmental Network of Spectroscopy (UNIMIB). We gratefully acknowledge G. Candian and E. Caprini for their assistance in the laboratory activities and data analysis. A.M.A.-G. acknowledges the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CIMO (UIDB/00690/2020 and UIDP/00690/2020) and SusTEC (LA/P/0007/2020). R. Bao acknowledges support from Project IMPACOM (PID2019-107424RB-I00) of the Spanish Ministry of Science and Innovation. M.C.-A. was supported by a Ramon y Cajal contract financed by the Spanish Ministry of Science and Innovation (RYC2020-029829-I). M.C. acknowledges support from Cátedra EMALCSA-UDC (industrial chair). R.C. was supported by a Juan de la Cierva contract and Project FJC (FJC-2021-046415-I) of the Spanish Ministry of Science and Innovation financed by the Next Generation EU. Z.E. and M.G.M. acknowledge support from the Portuguese Science and Technology Foundation (FCT) project no. PTDC/CTA-AMB/30793/2017 (AdaptAlentejo—Predicting ecosystem-level responses to climate change). H.F. acknowledges support from the Natural Environment Research Council award number NE/R016429/1 as part of the UK-SCaPE programme delivering National Capability. H.-P.G. and S.P. were supported by the European Union Horizon 2020 Research and Innovation 772 programme under grant agreement number 965367 (PlasticsFatE). D.P.H. acknowledges support from the Australian Research Council (DP190101848). S.N.M. acknowledges support from Rhodes University and the University Capacity Development Programme. K.K. acknowledges support from grant PRG 1266 of the Estonian Research Council. S.N. and S.S.S.S. acknowledge support from PAPIIT UNAM IG200820. A.P. acknowledges support from the Institute of Nature Conservation (Polish Academy of Sciences). P.R. acknowledges support from Portuguese Science Foundation (FCT) (DL57/2016/ICETA/EEC2018/25). E.-I.R. acknowledges support from grant PUT1598 of the Estonian Research Council. C.S. acknowledges support from the Flemish Interuniversity Council through the VLIR-UOS/UB Programme. G.A.W. acknowledges support from the Swedish Research Council (VR; grant no. 2020-03222) and Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS; grant no. 2020-01091). N.W. acknowledges support from the National Natural Science Foundation of China (grant no. 52279068). F.S. acknowledges support from an IAI-CONICET special grant.

Author information

Authors and Affiliations

Authors

Contributions

V.N. and B.L. designed the study and drafted the manuscript; V.N. compiled the data and conducted analyses; V.N., S. Chandra, J.A., M.B.A., A.M.A.-G., K.A., R. Bao., S.A.B., M.B., J.D.B., M.C.-A., M.C., C.C., E.deE., J.P.D., O.E., Z.E., H.F., S.G., H.-P.G., D.P.H., T.D.H., K.K., C.K., A.L.-P., F.L., M.G.M., M.C.M., S.N.M., C.O., D.Ö., S.P., F.R., F.S., C.S., U.N.T., P.V., G.A.W., L.Z. and B.L. contributed to the discussion and conceptualization of the paper; V.N., S. Chandra, J.A., M.B.A, A.M.A.-G, K.A., R. Bao.,S.A.B., M.B., R. Bissen, D.B., M.C., C.C., R.C., J.L.C., S. Chawchai, S.T.C., E.deE., J. Delgado, T.N.D., J.P.D., J. Dusaucy, O.E., Z.E., H.F., S.G., D.G., V.G., H.-P.G., D.P.H., T.D.H., K.K., G.B.K., R.K., C.K., E.M.K., A.L.-P., S.S.M., Y.M., B.M., M.M., M.C.M., S.N.M., V.O., D.Ö., S.P., A.P., P.R., E.-I.R., F.R., F.S., C.S., D. Siewert, K.S., U.N.T., M. Tereshina, J.T., M. Tolotti, A.V., P.V., B.  Welsh, B. Wesolek, G.A.W., N.W. and E.Z. collected the samples; M.L.F. provided guidance and support for Raman analyses; J.A., M.C.-A., T.D.H., M.G.M., C.O., D. Sartirana and B. Welsh contributed to data analysis; S. Chandra, J.A., S.A.B., M.B., M.-C.A., E.deE., Z.E., H.F., S.G., D.P.H., E.M.K., A.L.-P., Y.M., S.N.M., C.O., P.V., G.A.W. and L.Z. performed language editing; S. Chandra, J.A., M.B.A., A.M.A.-G, K.A., M.C.-A., J.D.B., M.C., C.C., R.C., S.T.C., K.S.C., J. Delgado, T.N.D., J.P.D., Z.E., H.F., M.L.F., H.-P.G., D.P.H., K.K., K.S.C., E.M.K., F.L., M.G.M., B.M., M.C.M., S.N., C.O., S.P., S.N., N.S., S.S.S.S., M. Tolotti, P.V., B. Wesolek, G.A.W., L.Z. and B.L. provided constructive reviews to the paper.

Corresponding author

Correspondence to Veronica Nava.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Comparison of the density distribution of the features of our study lakes and reservoirs (in yellow) to the box plot of freshwater systems included in the HydroLAKES global dataset.

The features being compared are: lake area in km2 (a); mean depth in m (b); lake volume in km3 (c); residence time of lakes in years (d).

Extended Data Fig. 2 Means and s.e. of plastic concentration (particles m−3) resulting from the three trawls collected in each lake.

The lakes are ranked in descending order based on their particle concentration, from highest to lowest.

Extended Data Fig. 3 Clusters of lakes based on the features of plastic debris found.

Cluster plot showing the different lakes included in the study divided on the basis of the percentage occurrence of the plastic shapes, colours and polymeric compositions.

Extended Data Fig. 4 Scaling 1 of redundancy analysis between plastic concentration in lakes, features of plastics and environmental and anthropogenic drivers.

The dots are coloured on the basis of the concentration of plastics (particles m−3) detected.

Extended Data Fig. 5 Density plots and histogram of the Feret’s diameter (width, mm) of the 9,425 particles identified in the 38 lakes analysed.

The median trend is indicated by the dashed blue line.

Extended Data Fig. 6 Images of different shapes of plastic particles collected in water samples.

The pictures show the shape categories used in the study: fragment (ac); fibre (df); filament (gi); film (j,k); sphere/pellet (l).

Extended Data Table 1 Blank levels for laboratory-based QA/QC, reporting the absolute number of fibres detected in the blank filters used as control for each replicated sample (that is, trawl)

Supplementary information

Peer Review File

Supplementary Table 1

Hydromorphological features and attributes of the 38 lakes and reservoirs included in the study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nava, V., Chandra, S., Aherne, J. et al. Plastic debris in lakes and reservoirs. Nature 619, 317–322 (2023). https://doi.org/10.1038/s41586-023-06168-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06168-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene