Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

A second wave of topological phenomena in photonics and acoustics

This article has been updated

Abstract

Light and sound are the most ubiquitous forms of waves, associated with a variety of phenomena and physical effects such as rainbows and echoes. Light and sound, both categorized as classical waves, have lately been brought into unexpected connections with exotic topological phases of matter. We are currently witnessing the onset of a second wave of active research into this topic. The past decade has been marked by fundamental advances comprising two-dimensional quantum Hall insulators and quantum spin and valley Hall insulators, whose topological properties are characterized using linear band topology. Here, going beyond these conventional topological systems, we focus on the latest frontiers, including non-Hermitian, nonlinear and non-Abelian topology as well as topological defects, for which the characterization of the topological features goes beyond the standard band-topology language. In addition to an overview of the current state of the art, we also survey future research directions for valuable applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Beyond conventional topological systems.
Fig. 2: Non-Hermitian topological phenomena.
Fig. 3: Nonlinearity-induced topological structures.
Fig. 4: Non-Abelian wave physics.
Fig. 5: Topological defects.

Similar content being viewed by others

Change history

  • 28 June 2023

    In the version of this article initially published, there was a typo in the text now reading “Interestingly, parallel transport of two degenerate states in the parameter space along an eighth surface of a sphere reproduces the braiding operation,” where the text originally read “a quarter surface.” The text is amended in the HTML and PDF versions of the article.

References

  1. Engheta, N. & Ziolkowski, R. W. Metamaterials: Physics and Engineering Explorations (Wiley, 2006).

  2. Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016).

    Article  ADS  Google Scholar 

  3. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  CAS  Google Scholar 

  4. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  ADS  CAS  Google Scholar 

  5. Lu, L., Joannopoulos, J. D. & Soljacić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    Article  ADS  CAS  Google Scholar 

  6. Zhang, X., Xiao, M., Cheng, Y., Lu, M.-H. & Christensen, J. Topological sound. Commun. Phys. 1, 97 (2018).

    Article  Google Scholar 

  7. Xie, B.-Y. et al. Photonics meets topology. Opt. Express 26, 24531–24550 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Ma, G., Xiao, M. & Chan, C. T. Topological phases in acoustic and mechanical systems. Nat. Rev. Phys. 1, 281–294 (2019).

    Article  Google Scholar 

  9. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Haldane, F. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Wang, Z., Chong, Y. D., Joannopoulos, J. D. & Soljacić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Fleury, R., Sounas, D. L., Sieck, C. F., Haberman, M. R. & Alù, A. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516–519 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Ni, X. et al. Topologically protected one-way edge mode in networks of acoustic resonators with circulating air flow. New J. Phys. 17, 053016 (2015).

    Article  ADS  Google Scholar 

  15. Yang, Z. et al. Topological acoustics. Phys. Rev. Lett. 114, 114301 (2015).

    Article  ADS  PubMed  Google Scholar 

  16. Khanikaev, A. B., Fleury, R., Mousavi, S. H. & Alu, A. Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice. Nat. Commun. 6, 8260 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Yang, Z., Lustig, E., Lumer, Y. & Segev, M. Photonic Floquet topological insulators in a fractal lattice. Light. Sci. Appl. 9, 128 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peano, V., Brendel, C., Schmidt, M. & Marquardt, F. Topological phases of sound and light. Phys. Rev. X 5, 031011 (2015).

    Google Scholar 

  20. Fleury, R., Khanikaev, A. B. & Alù, A. Floquet topological insulators for sound. Nat. Commun. 7, 11744 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rechtsman, M. C. et al. Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nat. Photon. 7, 153–158 (2013).

    Article  ADS  CAS  Google Scholar 

  22. Xiao, M., Chen, W.-J., He, W.-Y. & Chan, C. T. Synthetic gauge flux and Weyl points in acoustic systems. Nat. Phys. 11, 920–924 (2015).

    Article  CAS  Google Scholar 

  23. Kremer, M. et al. A square-root topological insulator with non-quantized indices realized with photonic Aharonov–Bohm cages. Nat Commun. 11, 907 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Mousavi, S. H., Khanikaev, A. B. & Wang, Z. Topologically protected elastic waves in phononic metamaterials. Nat. Commun. 6, 8682 (2015).

    Article  ADS  PubMed  Google Scholar 

  28. Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Ma, T., Khanikaev, A. B., Mousavi, S. H. & Shvets, G. Guiding electromagnetic waves around sharp corners: topologically protected photonic transport in metawaveguides. Phys. Rev. Lett. 114, 127401 (2015).

    Article  ADS  PubMed  Google Scholar 

  30. Wu, L.-H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015).

    Article  ADS  PubMed  Google Scholar 

  31. He, C. et al. Photonic topological insulator with broken time-reversal symmetry. Proc. Natl Acad. Sci. USA 113, 4924–4928 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. He, C. et al. Acoustic topological insulator and robust one-way sound transport. Nat. Phys. 12, 1124–1129 (2016).

    Article  CAS  Google Scholar 

  33. Maczewsky, L. J. et al. Fermionic time-reversal symmetry in a photonic topological insulator. Nat. Mater. 19, 855–860 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Lu, J., Qiu, C., Ke, M. & Liu, Z. Valley vortex states in sonic crystals. Phys. Rev. Lett. 116, 093901 (2016).

    Article  ADS  PubMed  Google Scholar 

  35. Dong, J.-W., Chen, X.-D., Zhu, H., Wang, Y. & Zhang, X. Valley photonic crystals for control of spin and topology. Nat. Mater. 16, 298–302 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Lu, J. et al. Observation of topological valley transport of sound in sonic crystals. Nat. Phys. 13, 369–374 (2017).

    Article  ADS  CAS  Google Scholar 

  37. Gao, F. et al. Topologically protected refraction of robust kink states in valley photonic crystals. Nat. Phys. 14, 140–144 (2018).

    Article  CAS  Google Scholar 

  38. Xie, B. et al. Higher-order band topology. Nat. Rev. Phys. 3, 520–532 (2021).

    Article  Google Scholar 

  39. Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61–66 (2017).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  40. Ezawa, M. Higher-order topological insulators and semimetals on the breathing kagome and pyrochlore lattices. Phys. Rev. Lett. 120, 026801 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Serra-Garcia, M. et al. Observation of a phononic quadrupole topological insulator. Nature 555, 342–345 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Peterson, C. W., Benalcazar, W. A., Hughes, T. L. & Bahl, G. A quantized microwave quadrupole insulator with topologically protected corner states. Nature 555, 346–350 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Xie, B. et al. Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals. Phys. Rev. Lett. 122, 233903 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Chen, X.-D. et al. Direct observation of corner states in second-order topological photonic crystal slabs. Phys. Rev. Lett. 122, 233902 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Xue, H., Yang, Y., Gao, F., Chong, Y. & Zhang, B. Acoustic higher-order topological insulator on a kagome lattice. Nat. Mater. 18, 108–112 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Ni, X., Weiner, M., Alu, A. & Khanikaev, A. B. Observation of higher-order topological acoustic states protected by generalized chiral symmetry. Nat. Mater. 18, 113–120 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, X. et al. Second-order topology and multidimensional topological transitions in sonic crystals. Nat. Phys. 15, 582–588 (2019).

    Article  CAS  Google Scholar 

  48. Zhang, Z. et al. Deep-subwavelength holey acoustic second-order topological insulators. Adv. Mater. 31, 1904682 (2019).

    Article  CAS  Google Scholar 

  49. Imhof, S. et al. Topolectrical-circuit realization of topological corner modes. Nat. Phys. 14, 925–929 (2018).

    Article  CAS  Google Scholar 

  50. Lee, C. H. et al. Topolectrical circuits. Commun. Phys. 1, 39 (2018).

    Article  Google Scholar 

  51. Bao, J. et al. Topoelectrical circuit octupole insulator with topologically protected corner states. Phys. Rev. B 100, 201406 (2019).

    Article  ADS  CAS  Google Scholar 

  52. Song, L., Yang, H., Cao, Y. & Yan, P. Realization of the square-root higher-order topological insulator in electric circuits. Nano Lett. 20, 7566–7571 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Chiu, C.-K., Teo, J. C., Schnyder, A. P. & Ryu, S. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016).

    Article  ADS  Google Scholar 

  54. Lu, L., Fu, L., Joannopoulos, J. D. & Soljačić, M. Weyl points and line nodes in gyroid photonic crystals. Nat. Photon. 7, 294–299 (2013).

    Article  ADS  CAS  Google Scholar 

  55. Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  56. Li, F., Huang, X., Lu, J., Ma, J. & Liu, Z. Weyl points and fermi arcs in a chiral phononic crystal. Nat. Phys. 14, 30–34 (2018).

    Article  CAS  Google Scholar 

  57. Cai, X. et al. Symmetry-enforced three-dimensional Dirac phononic crystals. Light. Sci. Appl. 9, 38 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. He, H. et al. Observation of quadratic Weyl points and double-helicoid arcs. Nat. Commun. 11, 1820 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gao, W. et al. Experimental observation of photonic nodal line degeneracies in metacrystals. Nat. Commun. 9, 950 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  60. Qiu, H. et al. Straight nodal lines and waterslide surface states observed in acoustic metacrystals. Phys. Rev. B 100, 041303 (2019).

    Article  ADS  CAS  Google Scholar 

  61. Deng, W. et al. Nodal rings and drumhead surface states in phononic crystals. Nat. Commun. 10, 1769 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  62. Yang, Y. et al. Observation of a topological nodal surface and its surface-state arcs in an artificial acoustic crystal. Nat. Commun. 10, 5185 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  63. Xiao, M. et al. Experimental demonstration of acoustic semimetal with topologically charged nodal surface. Sci. Adv. 6, eaav2360 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  64. Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and topology in non-Hermitian physics. Phys. Rev. X 9, 041015 (2019). Theoretical framework for non-Hermitian topological phases.

    CAS  Google Scholar 

  65. Ashida, Y., Gong, Z. & Ueda, M. Non-Hermitian physics. Adv. Phys. 69, 249–435 (2020).

    Article  ADS  Google Scholar 

  66. Su, W., Schrieffer, J. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

    Article  ADS  CAS  Google Scholar 

  67. Schomerus, H. Topologically protected midgap states in complex photonic lattices. Opt. Lett. 38, 1912–1914 (2013).

    Article  ADS  PubMed  Google Scholar 

  68. Zeuner, J. M. et al. Observation of a topological transition in the bulk of a non-Hermitian system. Phys. Rev. Lett. 115, 040402 (2015).

    Article  ADS  PubMed  Google Scholar 

  69. Weimann, S. et al. Topologically protected bound states in photonic parity–time-symmetric crystals. Nat. Mater. 16, 433–438 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Zhang, Z., López, M. R., Cheng, Y., Liu, X. & Christensen, J. Non-Hermitian sonic second-order topological insulator. Phys. Rev. Lett. 122, 195501 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Poli, C., Bellec, M., Kuhl, U., Mortessagne, F. & Schomerus, H. Selective enhancement of topologically induced interface states in a dielectric resonator chain. Nat. Commun. 6, 6710 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  73. St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photon. 11, 651–656 (2017).

    Article  ADS  CAS  Google Scholar 

  74. Parto, M. et al. Edge-mode lasing in 1D topological active arrays. Phys. Rev. Lett. 120, 113901 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Zhao, H. et al. Topological hybrid silicon microlasers. Nat. Commun. 9, 981 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  76. Harari, G. et al. Topological insulator laser: theory. Science 359, eaar4003 (2018).

    Article  PubMed  Google Scholar 

  77. Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    Article  PubMed  Google Scholar 

  78. Dikopoltsev, A. et al. Topological insulator vertical-cavity laser array. Science 373, 1514–1517 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Liu, Y. G., Jung, P. S., Parto, M., Christodoulides, D. N. & Khajavikhan, M. Gain-induced topological response via tailored long-range interactions. Nat. Phys. 17, 704–709 (2021).

    Article  CAS  Google Scholar 

  80. Yang, L., Li, G., Gao, X. & Lu, L. Topological-cavity surface-emitting laser. Nat. Photon. 16, 279–283 (2022).

    Article  ADS  CAS  Google Scholar 

  81. Schumer, A. et al. Topological modes in a laser cavity through exceptional state transfer. Science 375, 884–888 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  82. Hu, B. et al. Non-Hermitian topological whispering gallery. Nature 597, 655–659 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Okuma, N., Kawabata, K., Shiozaki, K. & Sato, M. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett. 124, 086801 (2020).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  84. Wojcik, C. C., Sun, X.-Q., Bzdušek, T. & Fan, S. Homotopy characterization of non-Hermitian Hamiltonians. Phys. Rev. B 101, 205417 (2020).

    Article  ADS  CAS  Google Scholar 

  85. Hu, H. & Zhao, E. Knots and non-Hermitian bloch bands. Phys. Rev. Lett. 126, 010401 (2021).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  86. Wang, K., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex-energy braiding of non-Hermitian bands. Nature 598, 59–64 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Kawabata, K., Bessho, T. & Sato, M. Classification of exceptional points and non-Hermitian topological semimetals. Phys. Rev. Lett. 123, 066405 (2019).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  88. Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  89. Zhang, X., Zhang, T., Lu, M.-H. & Chen, Y.-F. A review on non-Hermitian skin effect. Adv. Phys. X 7, 2109431 (2022).

    Google Scholar 

  90. Zhang, K., Yang, Z. & Fang, C. Universal non-Hermitian skin effect in two and higher dimensions. Nat. Commun. 13, 2496 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020). Experimental demonstration of the non-Hermitian skin effect.

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  92. Gao, P., Willatzen, M. & Christensen, J. Anomalous topological edge states in non-Hermitian piezophononic media. Phys. Rev. Lett. 125, 206402 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  93. Zhang, L. et al. Acoustic non-Hermitian skin effect from twisted winding topology. Nat. Commun. 12, 6297 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li, Z. & Mong, R. S. Homotopical characterization of non-Hermitian band structures. Phys. Rev. B 103, 155129 (2021).

    Article  ADS  CAS  Google Scholar 

  95. Shen, H., Zhen, B. & Fu, L. Topological band theory for non-Hermitian Hamiltonians. Phys. Rev. Lett. 120, 146402 (2018). Topological band theory for non-Hermitian systems.

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  96. El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

    Article  CAS  Google Scholar 

  97. Özdemir, Ş. K., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019).

    Article  ADS  PubMed  Google Scholar 

  98. Miri, M.-A. & Alù, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).

    Article  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  99. Zhou, H. et al. Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science 359, 1009–1012 (2018).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  100. Cerjan, A. et al. Experimental realization of a Weyl exceptional ring. Nat. Photon. 13, 623–628 (2019).

    Article  ADS  CAS  Google Scholar 

  101. Yang, Z. & Hu, J. Non-Hermitian Hopf-link exceptional line semimetals. Phys. Rev. B 99, 081102 (2019).

    Article  ADS  CAS  Google Scholar 

  102. Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  103. Cui, X., Zhang, R.-Y., Chen, W.-J., Zhang, Z.-Q. & Chan, C. T. Symmetry-protected topological exceptional chains in non-Hermitian crystals. Preprint at https://arxiv.org/abs/2204.08052 (2022).

  104. Ghorashi, S. A. A., Li, T., Sato, M. & Hughes, T. L. Non-Hermitian higher-order Dirac semimetals. Phys. Rev. B 104, L161116 (2021).

    Article  ADS  CAS  Google Scholar 

  105. Yang, X., Cao, Y. & Zhai, Y. Non-Hermitian Weyl semimetals: non-Hermitian skin effect and non-Bloch bulk–boundary correspondence. Chin. Phys. B 31, 010308 (2022).

    Article  ADS  Google Scholar 

  106. Weidemann, S., Kremer, M., Longhi, S. & Szameit, A. Topological triple phase transition in non-Hermitian Floquet quasicrystals. Nature 601, 354–359 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  107. Oppenheim, A. V. et al. Signals & Systems (Pearson Educación, 1997).

  108. Boyd, R. W. Nonlinear Optics (Academic Press, 2020).

  109. Smirnova, D., Leykam, D., Chong, Y. D. & Kivshar, Y. Nonlinear topological photonics. Appl. Phys. Rev. 7, 021306 (2020).

    Article  ADS  CAS  Google Scholar 

  110. Maczewsky, L. J. et al. Nonlinearity-induced photonic topological insulator. Science 370, 701–704 (2020). Experimental realization of nonlinear photonic topological insulators.

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  111. Chaunsali, R. & Theocharis, G. Self-induced topological transition in phononic crystals by nonlinearity management. Phys. Rev. B 100, 014302 (2019).

    Article  ADS  CAS  Google Scholar 

  112. Darabi, A. & Leamy, M. J. Tunable nonlinear topological insulator for acoustic waves. Phys. Rev. Appl. 12, 044030 (2019).

    Article  ADS  CAS  Google Scholar 

  113. Xia, S. et al. Nonlinear tuning of PT symmetry and non-Hermitian topological states. Science 372, 72–76 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  114. Mukherjee, S. & Rechtsman, M. C. Observation of Floquet solitons in a topological bandgap. Science 368, 856–859 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  115. Leykam, D. & Chong, Y. D. Edge solitons in nonlinear-photonic topological insulators. Phys. Rev. Lett. 117, 143901 (2016).

    Article  ADS  PubMed  Google Scholar 

  116. Ivanov, S. K., Kartashov, Y. V., Szameit, A., Torner, L. & Konotop, V. V. Floquet edge multicolor solitons. Laser Photon. Rev. 16, 2100398 (2022).

    Article  ADS  Google Scholar 

  117. Zangeneh-Nejad, F. & Fleury, R. Nonlinear second-order topological insulators. Phys. Rev. Lett. 123, 053902 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  118. Kirsch, M. S. et al. Nonlinear second-order photonic topological insulators. Nat. Phys. 17, 995–1000 (2021). Observation of nonlinear second-order photonic topological insulators.

    Article  CAS  Google Scholar 

  119. Yang, Y. et al. Synthesis and observation of non-Abelian gauge fields in real space. Science 365, 1021–1025 (2019). Experimental synthesis of non-Abelian gauge fields in real space.

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  120. Chen, Y. et al. Non-Abelian gauge field optics. Nat. Commun. 10, 3125 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  121. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  122. Boross, P., Asbóth, J. K., Széchenyi, G., Oroszlány, L. & Pályi, A. Poor man’s topological quantum gate based on the Su–Schrieffer–Heeger model. Phys. Rev. B 100, 045414 (2019).

    Article  ADS  CAS  Google Scholar 

  123. Neef, V. et al. Three-dimensional non-Abelian quantum holonomy. Nat. Phys. 13, 30–34 (2023).

    Article  Google Scholar 

  124. Chen, Z.-G., Zhang, R.-Y., Chan, C. T. & Ma, G. Classical non-Abelian braiding of acoustic modes. Nat. Phys. 18, 179–184 (2022).

    Article  CAS  Google Scholar 

  125. Sun, Y.-K. et al. Non-Abelian Thouless pumping in photonic waveguides. Nat. Phys. 18, 1080–1085 (2022).

    Article  CAS  Google Scholar 

  126. Brosco, V., Pilozzi, L., Fazio, R. & Conti, C. Non-Abelian Thouless pumping in a photonic lattice. Phys. Rev. A 103, 063518 (2021).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  127. You, O. et al. Observation of non-Abelian Thouless pump. Phys. Rev. Lett. 128, 244302 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  128. Fruchart, M., Zhou, Y. & Vitelli, V. Dualities and non-Abelian mechanics. Nature 577, 636–640 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  129. Patil, Y. S. et al. Measuring the knot of non-Hermitian degeneracies and non-commuting braids. Nature 607, 271–275 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  130. Zhang, Q. et al. Observation of acoustic non-Hermitian Bloch braids and associated topological phase transitions. Phys. Rev. Lett. 1307, 017201 (2023).

    Article  ADS  Google Scholar 

  131. Tang, W., Ding, K. & Ma, G. Experimental realization of non-Abelian permutations in a three-state non-Hermitian system. Natl Sci. Rev. 9, nwac010 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  132. Schnyder, A. P., Ryu, S., Furusaki, A. & Ludwig, A. W. Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008).

    Article  ADS  Google Scholar 

  133. Wu, Q., Soluyanov, A. A. & Bzdušek, T. Non-Abelian band topology in noninteracting metals. Science 365, 1273–1277 (2019). Theoretical framework of non-Abelian band topology.

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  134. Guo, Q. et al. Experimental observation of non-Abelian topological charges and edge states. Nature 594, 195–200 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  135. Ünal, F. N., Bouhon, A. & Slager, R.-J. Topological Euler class as a dynamical observable in optical lattices. Phys. Rev. Lett. 125, 053601 (2020).

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  136. Tiwari, A. & Bzdušek, T. Non-Abelian topology of nodal-line rings in PT-symmetric systems. Phys. Rev. B 101, 195130 (2020).

    Article  ADS  CAS  Google Scholar 

  137. Ezawa, M. Topological Euler insulators and their electric circuit realization. Phys. Rev. B 103, 205303 (2021).

    Article  ADS  CAS  Google Scholar 

  138. Jiang, B. et al. Experimental observation of non-Abelian topological acoustic semimetals and their phase transitions. Nat. Phys. 17, 1239–1246 (2021).

    Article  CAS  Google Scholar 

  139. Peng, B., Bouhon, A., Monserrat, B. & Slager, R.-J. Phonons as a platform for non-Abelian braiding and its manifestation in layered silicates. Nat. Commun. 13, 423 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bzdušek, T., Wu, Q., Rüegg, A., Sigrist, M. & Soluyanov, A. A. Nodal-chain metals. Nature 538, 75–78 (2016).

    Article  ADS  PubMed  Google Scholar 

  141. Wang, M. et al. Experimental observation of non-Abelian earring nodal links in phononic crystals. Phys. Rev. Lett. 128, 246601 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  142. Bouhon, A. et al. Non-Abelian reciprocal braiding of Weyl points and its manifestation in ZrTe. Nat. Phys. 16, 1137–1143 (2020).

    Article  CAS  Google Scholar 

  143. Jiang, T. et al. Four-band non-Abelian topological insulator and its experimental realization. Nat. Commun. 12, 6471 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mermin, N. D. The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  145. Chaikin, P. M. & Lubensky, T. C. Principles of Condensed Matter Physics (Cambridge Univ. Press, 1995).

  146. Yazyev, O. V. & Louie, S. G. Electronic transport in polycrystalline graphene. Nat. Mater. 9, 806–809 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  147. Machida, T. et al. Zero-energy vortex bound state in the superconducting topological surface state of Fe(Se,Te). Nat. Mater. 18, 811–815 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  148. Vozmediano, M. A., Katsnelson, M. & Guinea, F. Gauge fields in graphene. Phys. Rep. 496, 109–148 (2010).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  149. Teo, J. C. Y. & Kane, C. L. Topological defects and gapless modes in insulators and superconductors. Phys. Rev. B 82, 115120 (2010).

    Article  ADS  Google Scholar 

  150. Teo, J. C. Y. & Hughes, T. L. Existence of Majorana-fermion bound states on disclinations and the classification of topological crystalline superconductors in two dimensions. Phys. Rev. Lett. 111, 047006 (2013).

    Article  ADS  PubMed  Google Scholar 

  151. Slager, R.-J., Mesaros, A., Juričić, V. & Zaanen, J. Interplay between electronic topology and crystal symmetry: dislocation-line modes in topological band insulators. Phys. Rev. B 90, 241403 (2014).

    Article  ADS  CAS  Google Scholar 

  152. Ran, Y., Zhang, Y. & Vishwanath, A. One-dimensional topologically protected modes in topological insulators with lattice dislocations. Nat. Phys. 5, 298–303 (2009).

    Article  CAS  Google Scholar 

  153. Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267 (2000).

    Article  ADS  CAS  Google Scholar 

  154. Jackiw, R. & Rossi, P. Zero modes of the vortex-fermion system. Nucl. Phys. B 190, 681–691 (1981). Theoretical framework for zero modes bound to a vortex.

    Article  ADS  Google Scholar 

  155. Hou, C.-Y., Chamon, C. & Mudry, C. Electron fractionalization in two-dimensional graphene-like structures. Phys. Rev. Lett. 98, 186809 (2007).

    Article  ADS  PubMed  Google Scholar 

  156. Ivanov, D. A. Non-Abelian statistics of half-quantum vortices in p-wave superconductors. Phys. Rev. Lett. 86, 268–271 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  157. Gao, P. & Christensen, J. Topological vortices for sound and light. Nat. Nanotechnol. 16, 487–489 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  158. Gao, P. et al. Majorana-like zero modes in kekulé distorted sonic lattices. Phys. Rev. Lett. 123, 196601 (2019). Experiment on an acoustic state bound to a topological vortex.

    Article  ADS  CAS  PubMed  Google Scholar 

  159. Gao, P. & Christensen, J. Topological sound pumping of zero-dimensional bound states. Adv. Quantum Technol. 3, 2000065 (2020).

    Article  Google Scholar 

  160. Chen, C.-W. et al. Mechanical analogue of a majorana bound state. Adv. Mater. 31, 1904386 (2019).

    Article  CAS  Google Scholar 

  161. Ma, J., Xi, X., Li, Y. & Sun, X. Nanomechanical topological insulators with an auxiliary orbital degree of freedom. Nat. Nanotechnol. 16, 576–583 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  162. Menssen, A. J., Guan, J., Felce, D., Booth, M. J. & Walmsley, I. A. Photonic topological mode bound to a vortex. Phys. Rev. Lett. 125, 117401 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  163. Gao, X. et al. Dirac-vortex topological cavities. Nat. Nanotechnol. 15, 1012–1018 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  164. Noh, J. et al. Braiding photonic topological zero modes. Nat. Phys. 16, 989–993 (2020).

    Article  CAS  Google Scholar 

  165. Sheng, C. et al. Bound vortex light in an emulated topological defect in photonic lattices. Light. Sci. Appl. 11, 243 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  166. Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).

    Article  ADS  PubMed  Google Scholar 

  167. Li, T., Zhu, P., Benalcazar, W. A. & Hughes, T. L. Fractional disclination charge in two-dimensional Cn-symmetric topological crystalline insulators. Phys. Rev. B 101, 115115 (2020).

    Article  ADS  CAS  Google Scholar 

  168. Peterson, C. W., Li, T., Jiang, W., Hughes, T. L. & Bahl, G. Trapped fractional charges at bulk defects in topological insulators. Nature 589, 376–380 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  169. Liu, Y. et al. Bulk–disclination correspondence in topological crystalline insulators. Nature 589, 381–385 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  170. Deng, Y. et al. Observation of degenerate zero-energy topological states at disclinations in an acoustic lattice. Phys. Rev. Lett. 128, 174301 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  171. Wang, Q., Xue, H., Zhang, B. & Chong, Y. D. Observation of protected photonic edge states induced by real-space topological lattice defects. Phys. Rev. Lett. 124, 243602 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  172. Xia, B., Zhang, J., Tong, L., Zheng, S. & Man, X. Topologically valley-polarized edge states in elastic phononic plates yielded by lattice defects. Int. J. Solids Struct. 239, 111413 (2022).

    Article  Google Scholar 

  173. Xue, H. et al. Observation of dislocation-induced topological modes in a three-dimensional acoustic topological insulator. Phys. Rev. Lett. 127, 214301 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  174. Ye, L. et al. Topological dislocation modes in three-dimensional acoustic topological insulators. Nat. Commun. 13, 508 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lustig, E. et al. Photonic topological insulator induced by a dislocation in three dimensions. Nature 609, 931–935 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  176. Zhang, Z. et al. Pseudospin induced topological corner state at intersecting sonic lattices. Phys. Rev. B 101, 220102 (2020).

    Article  ADS  CAS  Google Scholar 

  177. Biesenthal, T. et al. Fractal photonic topological insulators. Science 376, 1114–1119 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  178. Ortix, C. Electrons broken into pieces at crystal defects. Nature 589, 356–357 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  179. Zhao, H. et al. Non-Hermitian topological light steering. Science 365, 1163–1166 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

X.Z. and M.-H.L. are supported by the National Natural Science Foundation of China (grant number 12222407) and the National Key R&D Program of China (grant numbers 2018YFA0306200 and 2021YFB3801800). J.C. acknowledges support from the Spanish Ministry of Science and Innovation through a Consolidación Investigadora grant (CNS2022-135706). J.C. also acknowledges discussions with P. San-Jose.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding authors

Correspondence to Ming-Hui Lu or Johan Christensen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Yidong Chong, Alexander Khanikaev and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zangeneh-Nejad, F., Chen, ZG. et al. A second wave of topological phenomena in photonics and acoustics. Nature 618, 687–697 (2023). https://doi.org/10.1038/s41586-023-06163-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06163-9

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing