Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Topological phenomena at defects in acoustic, photonic and solid-state lattices

An Author Correction to this article was published on 05 December 2023

This article has been updated

Abstract

There are two prominent applications of the mathematical concept of topology to the physics of materials: band topology, which classifies different topological insulators and semimetals, and topological defects that represent immutable deviations of a solid lattice from its ideal crystalline form. Although these two classes of topological phenomena have generally been treated separately, recent experimental advancements have begun to probe their intricate and surprising interactions, in solid-state materials as well as in metamaterials. Topological lattice defects in topological materials offer a platform to explore a diverse range of phenomena, such as robust topological-bound states, fractional charges, topological Wannier cycles, chiral and gravitational anomalies, topological lasers and topological-defect-induced pumping and non-Hermitian skin effects. In this Perspective article, we survey the developments in this rapidly moving field from both theoretical and experimental perspectives, with an emphasis on the latter. We also give an outlook on the potential impact of these phenomena on condensed matter physics, photonics, acoustics and materials science.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Topological defects and emergent phenomena.
Fig. 2: Topological defects in TIs and Floquet TIs.
Fig. 3: Topological defects in topological crystalline insulators.
Fig. 4: Topological defects in non-Hermitian systems and nanomaterials.

Similar content being viewed by others

Change history

References

  1. Mermin, N. D. The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  2. Kleman, M. & Friedel, J. Disclinations, dislocations, and continuous defects: a reappraisal. Rev. Mod. Phys. 80, 61–115 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  4. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  Google Scholar 

  5. Wieder, B. J. et al. Topological materials discovery from crystal symmetry. Nat. Rev. Mater. 7, 196–216 (2022).

    Article  ADS  Google Scholar 

  6. Jackiw, R. & Rebbi, C. Solitons with fermion number 1/2. Phys. Rev. D 13, 3398–3409 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  7. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

    Article  ADS  Google Scholar 

  8. Jackiw, R. & Rossi, P. Zero modes of the vortex-fermion system. Nucl. Phys. B 190, 681–691 (1981).

    Article  ADS  Google Scholar 

  9. Hou, C.-Y., Chamon, C. & Mudry, C. Electron fractionalization in two-dimensional graphene-like structures. Phys. Rev. Lett. 98, 186809 (2007).

    Article  ADS  Google Scholar 

  10. Chamon, C. et al. Electron fractionalization for two-dimensional Dirac fermions. Phys. Rev. B 77, 235431 (2008).

    Article  ADS  Google Scholar 

  11. Lee, E., Furusaki, A. & Yang, B.-J. Fractional charge bound to a vortex in two-dimensional topological crystalline insulators. Phys. Rev. B 101, 241109(R) (2020).

    Article  ADS  Google Scholar 

  12. Ran, Y., Zhang, Y. & Vishwanath, A. One-dimensional topologically protected modes in topological insulators with lattice dislocations. Nat. Phys. 5, 298–303 (2009). This is a seminal paper that brings TD to the centre of the field of topological physics.

    Article  Google Scholar 

  13. Teo, J. C. Y. & Kane, C. L. Topological defects and gapless modes in insulators and superconductors. Phys. Rev. B 82, 115120 (2010). This is a seminal paper that also covers a quite broad range of physical systems with TD-induced topological phenomena.

    Article  ADS  Google Scholar 

  14. Rosenberg, G., Guo, H.-M. & Franz, M. Wormhole effect in a strong topological insulator. Phys. Rev. B 82, 041104(R) (2010).

    Article  ADS  Google Scholar 

  15. Imura, K.-I., Takane, Y. & Tanaka, A. Weak topological insulator with protected gapless helical states. Phys. Rev. B 84, 035443 (2011).

    Article  ADS  Google Scholar 

  16. Juričić, V., Mesaros, A., Slager, R.-J. & Zaanen, J. Universal probes of two-dimensional topological insulators: dislocation and π-flux. Phys. Rev. Lett. 108, 106403 (2012). This paper reveals an interesting effect induced by dislocation and π-flux in strong TI.

    Article  ADS  Google Scholar 

  17. de Juan, F., Rüegg, A. & Lee, D.-H. Bulk-defect correspondence in particle-hole symmetric insulators and semimetals. Phys. Rev. B 89, 161117(R) (2014). This work studies the TD-induced effects in insulators and semimetals with particle-hole symmetry.

    Article  ADS  Google Scholar 

  18. Slager, R.-J., Mesaros, A., Juričić, V. & Zaanen, J. Interplay between electronic topology and crystal symmetry: dislocation-line modes in topological band insulators. Phys. Rev. B 90, 241403(R) (2014).

    Article  ADS  Google Scholar 

  19. Slager, R.-J. The translational side of topological band insulators. J. Phys. Chem. Solids 128, 24–38 (2019).

    Article  ADS  Google Scholar 

  20. Panigrahi, A., Juričić, V. & Roy, B. Projected topological branes. Commum. Phys. 5, 230 (2022).

    Article  Google Scholar 

  21. Schindler, F., Tsirkin, S. S., Neupert, T., Bernevig, B. A. & Wieder, B. J. Topological zero-dimensional defect and flux states in three-dimensional insulators. Nat. Commun. 13, 5791 (2022). This is a systematic work on the topological 0D states induced by TDs and fluxes.

    Article  ADS  Google Scholar 

  22. Tretiakov, O. A., Abanov, A., Murakami, S. & Sinova, J. Large thermoelectric figure of merit for three-dimensional topological Anderson insulators via line dislocation engineering. Appl. Phys. Lett. 97, 073108 (2010).

    Article  ADS  Google Scholar 

  23. Rüegg, A. & Lin, C. Bound states of conical singularities in graphene-based topological insulators. Phys. Rev. Lett. 100, 046401 (2013). This work reveals the underlying mechanism for disclination-induced bound states with a clear physics picture.

    Article  ADS  Google Scholar 

  24. Biswas, R. R. & Son, D. T. Fractional charge and inter-Landau–level states at points of singular curvature. Proc. Natl Acad. Sci. USA 113, 8636–8641 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Teo, J. C. Y. & Hughes, T. L. Topological defects in symmetry-protected topological phases. Annu. Rev. Condens. Matter Phys. 8, 211–237 (2017).

    Article  ADS  Google Scholar 

  26. Teo, J. C. Y. & Hughes, T. L. Existence of Majorana fermion bound states on disclinations and the classification of topological crystalline superconductors in two dimensions. Phys. Rev. Lett. 111, 047006 (2013).

    Article  ADS  Google Scholar 

  27. Benalcazar, W. A., Teo, J. C. Y. & Hughes, T. L. Classification of two-dimensional topological crystalline superconductors and Majorana bound states at disclinations. Phys. Rev. B 89, 224503 (2014).

    Article  ADS  Google Scholar 

  28. Li, T., Zhu, P., Benalcazar, W. A. & Hughes, T. L. Fractional disclination charge in two-dimensional Cn-symmetric topological crystalline insulators. Phys. Rev. B 101, 115115 (2020). This work predicts the disclination-induced fractional charges.

    Article  ADS  Google Scholar 

  29. Geier, M., Fulga, I. C. & Lau, A. Bulk-boundary-defect correspondence at disclinations in rotation-symmetric topological insulators and superconductors. SciPost Phys. 10, 092 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  30. Liu, S., Vishwanath, A. & Khalaf, E. Shift insulators: rotation-protected two-dimensional topological crystalline insulators. Phys. Rev. X 9, 031003 (2019). This work reveals that the flux insertion is a useful probe of fragile topology.

    Google Scholar 

  31. May-Mann, J. & Hughes, T. L. Crystalline responses for rotation-invariant higher-order topological insulators. Phys. Rev. B 106, L241113 (2022).

    Article  ADS  Google Scholar 

  32. Wu, S., Jiang, B., Liu, Y. & Jiang, J.-H. All-dielectric photonic crystal with unconventional higher-order topology. Photonics Res. 9, 668–677 (2021). This work predicts the disclination-induced fractional charges in photonic crystals.

    Article  Google Scholar 

  33. Xia, B., Zhang, J., Tong, L., Zheng, S. & Man, X. Topological bound states in elastic phononic plates induced by disclinations. Acta Mech. Sin. 38, 521459 (2022).

    Article  MathSciNet  Google Scholar 

  34. van Miert, G. & Ortix, C. Dislocation charges reveal two-dimensional topological crystalline invariants. Phys. Rev. B 97, 201111(R) (2018). This work predicts the dislocation-induced fractional charges.

    Article  ADS  Google Scholar 

  35. Queiroz, R., Fulga, I. C., Avraham, N., Beidenkopf, H. & Cano, J. Partial lattice defects in higher-order topological insulators. Phys. Rev. Lett. 123, 266802 (2019). This work predicts the nontrivial effects induced by partial lattice defects in higher-order TIs.

    Article  ADS  Google Scholar 

  36. Roy, B. & Juričić, V. Dislocation as a bulk probe of higher-order topological insulators. Phys. Rev. Res. 3, 033107 (2021).

    Article  Google Scholar 

  37. Kong, Z.-L., Lin, Z.-K. & Jiang, J.-H. Topological Wannier cycles for the bulk and edges. Chin. Phys. Lett. 39, 084301 (2022).

    Article  ADS  Google Scholar 

  38. Qi, Y., He, H. & Xiao, M. Manipulation of acoustic vortex with topological dislocation states. Appl. Phys. Lett. 120, 212202 (2022).

    Article  ADS  Google Scholar 

  39. Martínez, J. A. I., Laforge, N., Kadic, M. & Laude, V. Topological waves guided by a glide-reflection symmetric crystal interface. Phys. Rev. B 106, 064304 (2022).

    Article  ADS  Google Scholar 

  40. Bi, R., Yan, Z., Lu, L. & Wang, Z. Topological defects in Floquet systems: anomalous chiral modes and topological invariant. Phys. Rev. B 95, 161115(R) (2017). This is a seminal work on TDs in Floquet systems.

    Article  ADS  Google Scholar 

  41. Yao, S., Yan, Z. & Wang, Z. Topological invariants of Floquet systems: general formulation, special properties, and Floquet topological defects. Phys. Rev. B 96, 195303 (2017). This work discusses indepth the effects induced by TDs in Floquet systems.

    Article  ADS  Google Scholar 

  42. Lin, Q., Sun, X.-Q., Xiao, M., Zhang, S.-C. & Fan, S. A three-dimensional photonic topological insulator using a two-dimensional ring resonator lattice with a synthetic frequency dimension. Sci. Adv. 4, eaat2774 (2018). This work introduces a way to construct 3D photonic TIs using synthetic dimensions and screw dislocations.

    Article  ADS  Google Scholar 

  43. Nag, T. & Roy, B. Anomalous and normal dislocation modes in Floquet topological insulators. Commun. Phys. 4, 157 (2021).

    Article  Google Scholar 

  44. Lu, L., Gao, H. & Wang, Z. Topological one-way fiber of second Chern number. Nat. Commun. 9, 5384 (2018).

    Article  ADS  Google Scholar 

  45. Lin, H. & Lu, L. Dirac-vortex topological photonic crystal fibre. Light Sci. Appl. 9, 202 (2020).

    Article  ADS  Google Scholar 

  46. Košata, J. & Zilberberg, O. Second-order topological modes in two-dimensional continuous media. Phys. Rev. Res. 3, L032029 (2021).

    Article  Google Scholar 

  47. Sumiyoshi, H. & Fujimoto, S. Torsional chiral magnetic effect in a Weyl semimetal with a topological defect. Phys. Rev. Lett. 116, 166601 (2016). This work reveals the torsional chiral magnetic effect in Weyl semimetals.

    Article  ADS  Google Scholar 

  48. Pikulin, D. I., Chen, A. & Franz, M. Chiral anomaly from strain-induced gauge fields in Dirac and Weyl semimetals. Phys. Rev. X 6, 041021 (2016). This work reveals the chiral anomaly induced by screw dislocations in Weyl semimetals.

    Google Scholar 

  49. Chernodub, M. N. & Zubkov, M. A. Chiral anomaly in Dirac semimetals due to dislocations. Phys. Rev. B 95, 115410 (2017).

    Article  ADS  Google Scholar 

  50. Wieder, B. J., Kim, Y., Rappe, A. M. & Kane, C. L. Double Dirac semimetals in three dimensions. Phys. Rev. Lett. 116, 186402 (2016).

    Article  ADS  Google Scholar 

  51. Wieder, B. J., Lin, K.-S. & Bradlyn, B. Axionic band topology in inversion-symmetric Weyl-charge-density waves. Phys. Rev. Res. 2, 042010(R) (2020).

    Article  Google Scholar 

  52. Yu, J., Wieder, B. J. & Liu, C.-X. Dynamical piezomagnetic effect in time-reversal-invariant Weyl semimetals with axionic charge density waves. Phys. Rev. B 104, 174406 (2021).

    Article  ADS  Google Scholar 

  53. Soto-Garrido, R., Muñoz, E. & Juričić, V. Dislocation defect as a bulk probe of monopole charge of multi-Weyl semimetals. Phys. Rev. Res. 2, 012043(R) (2020).

    Article  Google Scholar 

  54. Wang, Z. & Zhang, S.-C. Chiral anomaly, charge density waves, and axion strings from Weyl semimetals. Phys. Rev. B 87, 161107(R) (2013).

    Article  ADS  Google Scholar 

  55. You, Y., Cho, G. Y. & Hughes, T. L. Response properties of axion insulators and Weyl semimetals driven by screw dislocations and dynamical axion strings. Phys. Rev. B 94, 085102 (2016).

    Article  ADS  Google Scholar 

  56. Huang, Z.-M., Li, L., Zhou, J. & Zhang, H.-H. Torsional response and Liouville anomaly in Weyl semimetals with dislocations. Phys. Rev. B 99, 155152 (2019).

    Article  ADS  Google Scholar 

  57. Bonilla, D., Muñoz, E. & Soto-Garrido, R. Thermo-magneto-electric transport through a torsion dislocation in a type I Weyl semimetal. Nanomaterials 11, 2972 (2021).

    Article  Google Scholar 

  58. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  ADS  Google Scholar 

  59. Affleck, L., Kennedy, T., Lieb, E. L. & Tasaki, H. Rigorous results on valence-bond states in antiferromagnets. Phys. Rev. Lett. 59, 799 (1987).

    Article  ADS  Google Scholar 

  60. Wang, F. & Vishwanath, A. Spin-liquid states on the triangular and Kagomé lattices: a projective-symmetry-group analysis of Schwinger boson states. Phys. Rev. B 74, 174423 (2006).

    Article  ADS  Google Scholar 

  61. Hamasaki, H., Tokumoto, Y. & Edagawa, K. Dislocation conduction in Bi-Sb topological insulators. Appl. Phys. Lett. 110, 092105 (2017).

    Article  ADS  Google Scholar 

  62. Nayak, A. K. et al. Resolving the topological classification of bismuth with topological defects. Sci. Adv. 5, eaax6996 (2019). This work observes for the first time the topological phenomena induced by a screw dislocation.

    Article  ADS  Google Scholar 

  63. Jin, K.-H. & Liu, F. 1D topological phases in transition-metal monochalcogenide nanowires. Nanoscale 12, 14661 (2020).

    Article  Google Scholar 

  64. Xue, H. et al. Observation of dislocation-induced topological modes in a three-dimensional acoustic topological insulator. Phys. Rev. Lett. 127, 214301 (2021). This is one of the early works that observe the topological phenomena induced by a screw dislocation in acoustic metamaterials — using an acoustic weak TI.

    Article  ADS  Google Scholar 

  65. Ye, L. et al. Topological dislocation modes in three-dimensional acoustic topological insulators. Nat. Commun. 13, 508 (2022). This is one of the early works that observe the topological phenomena induced by a screw dislocation in acoustic metamaterials — using an acoustic Floquet TI.

    Article  ADS  Google Scholar 

  66. Peterson, C. W. et al. Trapped fractional charges at bulk defects in topological insulators. Nature 589, 376–380 (2021). This is one of the two early works that observe the fractional charge bound to a disclination in metamaterials — using transmission line systems.

    Article  ADS  Google Scholar 

  67. Liu, Y. et al. Bulk-disclination correspondence in topological crystalline insulators. Nature 589, 381–385 (2021). This is one of the two early works that observe the fractional charge bound to a disclination in metamaterials — using photonic crystal systems.

    Article  ADS  Google Scholar 

  68. Paulose, J., Chen, B. G. & Vitelli, V. Topological modes bound to dislocations in mechanical metamaterials. Nat. Phys. 11, 153–156 (2015). This is the first work that observes the topological modes bound to dislocations in mechanical systems.

    Article  Google Scholar 

  69. Li, F.-F. et al. Topological light-trapping on a dislocation. Nat. Commun. 9, 2462 (2018). This is the first work that observes the topological modes induced by dislocations in photonic crystal systems.

    Article  ADS  Google Scholar 

  70. Grinberg, I. H., Lin, M., Benalcazar, W. A., Hughes, T. L. & Bahl, G. Trapped state at a dislocation in a weak magnetomechanical topological insulator. Phys. Rev. Appl. 14, 064042 (2020).

    Article  ADS  Google Scholar 

  71. Deng, Y. et al. Observation of degenerate zero-energy topological states at disclinations in an acoustic lattice. Phys. Rev. Lett. 128, 174301 (2022).

    Article  ADS  Google Scholar 

  72. Chen, Y. et al. Observation of topological p-orbital disclination states in non-Euclidean acoustic metamaterials. Phys. Rev. Lett. 129, 154301 (2022).

    Article  ADS  Google Scholar 

  73. Yamada, S. S. et al. Bound states at partial dislocation defects in multipole higher-order topological insulators. Nat. Commun. 13, 2035 (2022).

    Article  ADS  Google Scholar 

  74. Lin, Z.-K. et al. Topological Wannier cycles induced by sub-unit-cell artificial gauge flux in a sonic crystal. Nat. Mater. 21, 430–437 (2022). This work observes a novel topological phenomenon induced by screw dislocations: the topological Wannier cycles in higher-order TIs.

    Article  ADS  Google Scholar 

  75. Wang, Q., Xue, H., Zhang, B. & Chong, Y.  D. Observation of protected photonic edge states induced by real-space topological lattice defects. Phys. Rev. Lett. 124, 243602 (2020). This work observes the internal edge states in a domain wall created by a pair of disclinations in a valley-Hall system.

    Article  ADS  Google Scholar 

  76. Wang, Q. et al. Vortex states in an acoustic Weyl crystal with a topological lattice defect. Nat. Commun. 12, 3654 (2021).

    Article  ADS  Google Scholar 

  77. Liu, H. et al. Bound vortex light in an emulated topological defect in photonic lattices. Light Sci. Appl. 11, 243 (2022).

    Article  Google Scholar 

  78. Afzal, S. & Van, V. Trapping light in a Floquet topological photonic insulator by Floquet defect mode resonance. APL Photon. 6, 116101 (2021).

    Article  ADS  Google Scholar 

  79. Lustig, E. et al. Photonic topological insulator induced by a dislocation in three dimensions. Nature 609, 931–935 (2022). This work realizes the internal edge states in a domain wall created by a pair of disclinations in a valley-Hall system.

    Article  ADS  Google Scholar 

  80. Chen, X. D. et al. Second Chern crystals with inherently nontrivial topology. Natl Sci. Rev. 10, nwac289 (2023). This work realizes the internal edge states in a domain wall created by a pair of disclinations in a valley-Hall system.

    Article  Google Scholar 

  81. Xiao, M. et al. Geometric phase and band inversion in periodic acoustic systems. Nat. Phys. 11, 240–244 (2015).

    Article  Google Scholar 

  82. Meier, E. J., An, F. A. & Gadway, B. Observation of the topological soliton state in the Su–Schrieffer–Heeger model. Nat. Commun. 7, 13986 (2016).

    Article  ADS  Google Scholar 

  83. Lin, S., Zhang, L., Tian, T., Duan, C.-K. & Du, J. Dynamic observation of topological soliton states in a programmable nanomechanical lattice. Nano Lett. 21, 1205 (2021).

    Article  Google Scholar 

  84. Gao, P. et al. Majorana-like zero modes in Kekulé distorted sonic lattices. Phys. Rev. Lett. 123, 196601 (2019).

    Article  ADS  Google Scholar 

  85. Chen, C.-W. et al. Mechanical analogue of a Majorana bound state. Adv. Mater. 31, 1904386 (2019).

    Article  Google Scholar 

  86. Ma, J., Xi, X., Li, Y. & Sun, X. Nanomechanical topological insulators with an auxiliary orbital degree of freedom. Nat. Nanotechnol. 16, 576–583 (2021). This work designs a Kekulé Dirac vortex structure to trap a topological mode in a nanomechanical system.

    Article  ADS  Google Scholar 

  87. Menssen, A. J. et al. Photonic topological mode bound to a vortex. Phys. Rev. Lett. 125, 117401 (2020).

    Article  ADS  Google Scholar 

  88. Noh, J. et al. Braiding photonic topological zero modes. Nat. Phys. 16, 989–993 (2020). This work achieves the braiding of photonic topological zero modes bound to Dirac vortices.

    Article  Google Scholar 

  89. Gao, X. et al. Dirac-vortex topological cavities. Nat. Nanotechnol. 15, 1012–1018 (2020). This work shows that a Kekulé Dirac vortex can be an excellent optical cavity.

    Article  ADS  Google Scholar 

  90. Yang, L., Li, G., Gao, X. & Lu, L. Topological-cavity surface-emitting laser. Nat. Photon. 16, 279–283 (2022). This work uses the Dirac vortex optical cavity to achieve a high-performance surface emitting laser.

    Article  ADS  Google Scholar 

  91. Ma, J. et al. Room-temperature continuous-wave Dirac-vortex topological lasers on silicon. Preprint at arXiv https://doi.org/10.48550/arXiv.2106.13838 (2021). This work ultilizes the Dirac vortex optical cavity to achieve a high-performance topological laser.

  92. Xi, X., Ma, J. & Sun, X. A topological Dirac-vortex parametric phonon laser. Preprint at arXiv https://doi.org/10.48550/arXiv.2107.11162 (2021).

  93. Han, S. et al. Photonic Majorana quantum cascade laser with polarization-winding emission. Nat. Commun. 14, 707 (2023).

    Article  ADS  Google Scholar 

  94. Schine, N. et al. Synthetic Landau levels for photons. Nature 534, 671–675 (2016).

    Article  ADS  Google Scholar 

  95. Schine, N. et al. Electromagnetic and gravitational responses of photonic Landau levels. Nature 565, 173–179 (2019). This work uses a singular apex, equivalent to a disclination, to induce quantum anomaly in a photonic Landau level system.

    Article  ADS  Google Scholar 

  96. Barkeshli, M. & Qi, X.-L. Topological nematic states and non-Abelian lattice dislocations. Phys. Rev. X 2, 031013 (2012).

    Google Scholar 

  97. Mesaros, A., Kim, Y. B. & Ran, Y. Changing topology by topological defects in three-dimensional topologically ordered phases. Phys. Rev. B 88, 035141 (2013).

    Article  ADS  Google Scholar 

  98. Tuegel, T. I., Chua, V. & Hughes, T. L. Embedded topological insulators. Phys. Rev. B 100, 115126 (2019). This work introduces the concept of embedded topological phases in which TDs have an important role.

    Article  ADS  Google Scholar 

  99. Velury, S. & Hughes, T. L. Embedded topological semimetals. Phys. Rev. B 105, 184105 (2022).

    Article  ADS  Google Scholar 

  100. Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).

    Article  ADS  Google Scholar 

  101. Kunst, F. K., Edvardsson, E., Budich, J. C. & Bergholtz, E. J. Biorthogonal bulk-boundary correspondence in non-Hermitian systems. Phys. Rev. Lett. 121, 026808 (2018).

    Article  ADS  Google Scholar 

  102. Lee, C. H. & Thomale, R. Anatomy of skin modes and topology in non-Hermitian systems. Phys. Rev. B 99, 201103(R) (2019).

    Article  ADS  Google Scholar 

  103. Sun, X.-Q., Zhu, P. & Hughes, T. L. Geometric response and disclination induced skin effect in non-Hermitian systems. Phys. Rev. Lett. 127, 066401 (2021). This work introduces the TD-induced non-Hermitian skin effect.

    Article  ADS  MathSciNet  Google Scholar 

  104. Schindler, F. & Prem, A. Dislocation non-Hermitian skin effect. Phys. Rev. B 104, L161106 (2021).

    Article  ADS  Google Scholar 

  105. Bhargava, B. A., Fulga, I. C., Brink, J. V. D. & Moghaddam, A. G. Non-Hermitian skin effect of dislocations and its topological origin. Phys. Rev. B 104, L241402 (2021).

    Article  ADS  Google Scholar 

  106. Panigrahi, A., Moessner, R. & Roy, B. Non-Hermitian dislocation modes: stability and melting across exceptional points. Phys. Rev. B 106, L041302 (2022).

    Article  ADS  Google Scholar 

  107. Xie, B.-Y., You, O. & Zhang, S. Photonic topological pump between chiral disclination states. Phys. Rev. A 106, L021502 (2022).

    Article  ADS  Google Scholar 

  108. Benalcazar, W. A., Li, T. & Hughes, T. L. Quantization of fractional corner charge in Cn symmetric higher-order topological crystalline insulators. Phys. Rev. B 99, 245151 (2019). This work predicts the emergence of fractional charges at disclinations in higher-order TIs.

    Article  ADS  Google Scholar 

  109. Hwang, Y., Ahn, J. & Yang, B.-J. Fragile topology protected by inversion symmetry: diagnosis, bulk-boundary correspondence, and Wilson loop. Phys. Rev. B 100, 205126 (2019).

    Article  ADS  Google Scholar 

  110. Chiu, C.-K., Teo, J. C. Y., Schnyder, A. P. & Ryu, S. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016).

    Article  ADS  Google Scholar 

  111. Liu, G.-G. et al. Topological Chern vectors in three-dimensional photonic crystals. Nature 609, 925 (2022).

    Article  ADS  Google Scholar 

  112. Mäkinen, J. T. et al. Half-quantum vortices and walls bounded by strings in the polar-distorted phases of topological superfluid 3He. Nat. Commun. 10, 237 (2019).

    Article  ADS  Google Scholar 

  113. Autti, S. et al. Observation of half-quantum vortices in topological superfluid 3He. Phys. Rev. Lett. 117, 255301 (2016).

    Article  ADS  Google Scholar 

  114. Alicea, J., Oreg, Y., Refael, G., von Oppen, F. & Fisher, M. P. A. Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nat. Phys. 7, 412–417 (2011).

    Article  Google Scholar 

  115. Wang, D. et al. Evidence for Majorana bound states in an iron-based superconductor. Science 362, 333 (2018).

    Article  ADS  Google Scholar 

  116. Liu, Q. et al. Robust and clean Majorana zero mode in the vortex core of high-temperature superconductor (Li0.84Fe0.16) OHFeSe. Phys. Rev. X 8, 041056 (2018).

    Google Scholar 

  117. Kong, L. et al. Half-integer level shift of vortex bound states in an iron-based superconductor. Nat. Phys. 15, 1181 (2019).

    Article  Google Scholar 

  118. Zhu, S. et al. Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor. Science 367, 189 (2020).

    Article  ADS  Google Scholar 

  119. Cao, L. et al. Two distinct superconducting states controlled by orientations of local wrinkles in LiFeAs. Nat. Commun. 12, 6312 (2021).

    Article  ADS  Google Scholar 

  120. Liu, W. et al. Tunable vortex Majorana modes controlled by strain in homogeneous LiFeAs. Quantum Front. 1, 20 (2022).

    Article  Google Scholar 

  121. Li, M. et al. Ordered and tunable Majorana-zero-mode lattice in naturally strained LiFeAs. Nature 606, 890 (2022).

    Article  ADS  Google Scholar 

  122. Zhang, R.-X. Bulk-vortex correspondence of higher-order topological superconductors. Preprint at arXiv https://doi.org/10.48550/arXiv.2208.01652 (2022).

  123. Asahi, D. & Nagaosa, N. Topological indices, defects, and Majorana fermions in chiral superconductors. Phys. Rev. B 86, 100504(R) (2012).

    Article  ADS  Google Scholar 

  124. Bühler, A. et al. Majorana modes and p-wave superfluids for fermionic atoms in optical lattices. Nat. Commun. 5, 4504 (2014).

    Article  ADS  Google Scholar 

  125. Wu, Y.-J., Li, N. & Kou, S.-P. Majorana modes and topological superfluids for ultracold fermionic atoms in anisotropic square optical lattices. Eur. Phys. J. B 89, 282 (2016).

    Article  ADS  Google Scholar 

  126. Hughes, T. L., Yao, H. & Qi, X.-L. Majorana zero modes in dislocations of Sr2RuO4. Phys. Rev. B 90, 235123 (2014).

    Article  ADS  Google Scholar 

  127. Chung, S. B., Chan, C. & Yao, H. Dislocation Majorana zero modes in perovskite oxide 2DEG. Sci. Rep. 6, 25184 (2016).

    Article  ADS  Google Scholar 

  128. Hu, L.-H. & Zhang, R.-X. Dislocation Majorana bound states in iron-based superconductors. Preprint at arXiv https://doi.org/10.48550/arXiv.2207.10113 (2022).

  129. Alloul, H., Bobroff, J., Gabay, M. & Hirschfeld, P. J. Defects in correlated metals and superconductors. Rev. Mod. Phys. 81, 45 (2009).

    Article  ADS  Google Scholar 

  130. Barkeshli, M., Jian, C. M. & Qi, X. L. Theory of defects in Abelian topological states. Phys. Rev. B 88, 235103 (2013).

    Article  ADS  Google Scholar 

  131. Barkeshli, M., Jian, C. M. & Qi, X. L. Classification of topological defects in Abelian topological states. Phys. Rev. B 88, 241103 (2013).

    Article  ADS  Google Scholar 

  132. Barkeshli, M., Bonderson, P., Cheng, M. & Wang, Z. Symmetry fractionalization, defects, and gauging of topological phases. Phys. Rev. B 100, 115147 (2019).

    Article  ADS  Google Scholar 

  133. Bombín, H. Topological order with a twist: ising anyons from an Abelian model. Phys. Rev. Lett. 105, 030403 (2010).

    Article  ADS  Google Scholar 

  134. Kitaev, A. & Kong, L. Models for gapped boundaries and domain walls. Commun. Math. Phys. 313, 351–373 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  135. You, Y. Z. & Wen, X. G. Projective non-Abelian statistics of dislocation defects in a ZN rotor model. Phys. Rev. B 86, 161107 (2012).

    Article  ADS  Google Scholar 

  136. Mesaros, A., Kim, Y. B. & Ran, Y. Changing topology by topological defects in three-dimensional topologically ordered phases. Phys. Rev. B 88, 035141 (2013).

    Article  ADS  Google Scholar 

  137. You, Y. Z., Jian, C. M. & Wen, X. G. Synthetic non-Abelian statistics by Abelian anyon condensation. Phys. Rev. B 87, 045106 (2013).

    Article  ADS  Google Scholar 

  138. Barkeshli, M., Jian, C. M. & Qi, X. L. Twist defects and projective non-Abelian braiding statistics. Phys. Rev. B 87, 045130 (2013).

    Article  ADS  Google Scholar 

  139. Teo, J. C., Roy, A. & Chen, X. Unconventional fusion and braiding of topological defects in a lattice model. Phys. Rev. B 90, 115118 (2014).

    Article  ADS  Google Scholar 

  140. Barkeshli, M. & Qi, X. L. Topological nematic states and non-abelian lattice dislocations. Phys. Rev. X 2, 031013 (2012).

    Google Scholar 

  141. Liu, Z., Möller, G. & Bergholtz, E. J. Exotic non-Abelian topological defects in lattice fractional quantum Hall states. Phys. Rev. Lett. 119, 106801 (2017).

    Article  ADS  Google Scholar 

  142. Cheng, H., Yang, J., Wang, Z. & Lu, L. Monopole topological resonators. Preprint at arXiv https://doi.org/10.48550/arXiv.2210.09056 (2022).

  143. Ren, B., Wang, H., Kartashov, Y. V., Li, Y. & Zhang, Y. Nonlinear photonic disclination states. APL Photon. 8, 016101 (2023).

    Article  ADS  Google Scholar 

  144. Ren, B. et al. Observation of nonlinear disclination states. Preprint at arXiv https://doi.org/10.48550/arXiv.2304.11936 (2023).

  145. Qin, H., Zhang, Z., Chen, Q. & Fleury, R. Anomalous Floquet topological disclination states. Preprint at arXiv https://doi.org/10.48550/arXiv.2304.03206 (2023).

  146. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  147. Xue, H., Yang, Y. & Zhang, B. Topological acoustics. Nat. Rev. Mat. 7, 974–990 (2022).

    Article  Google Scholar 

  148. Ni, X., Yves, S., Krasnok, A. & Alu, A. Topological metamaterials. Chem. Rev. 123, 7585–7654 (2023).

    Article  Google Scholar 

  149. Zhu, W. et al. Topological phononic metamaterials. Preprint at arXiv https://doi.org/10.48550/arXiv.2303.01426 (2023).

  150. Zhi, C., Bando, Y., Tang, C. & Golberg, D. Large-scale fabrication of boron nitride nanohorn. Appl. Phys. Lett. 87, 063107 (2005).

    Article  ADS  Google Scholar 

  151. Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).

    Article  ADS  Google Scholar 

  152. Yakobson, B. I. & Ding, F. Observational geology of graphene at the nanoscale. ACS Nano. 5, 1569–1574 (2011).

    Article  Google Scholar 

  153. Warner, J. H. et al. Dislocation-driven deformations in graphene. Science 337, 209–212 (2012).

    Article  ADS  Google Scholar 

  154. Liu, Y., Zou, X. & Yakobson, B. I. Dislocations and grain boundaries in two-dimensional boron nitride. ACS Nano 6, 7053–7058 (2012).

    Article  Google Scholar 

  155. Butz, B. et al. Dislocations in bilayer graphene. Nature 505, 533–537 (2014).

    Article  ADS  Google Scholar 

  156. Gupta, S. & Saxena, A. A topological twist on materials science. MRS Bull. 39, 265–279 (2014).

    Article  Google Scholar 

  157. Lammert, P. E. & Crespi, V. H. Topological phases in graphitic cones. Phys. Rev. Lett. 85, 5190 (2000).

    Article  ADS  Google Scholar 

  158. Vozmediano, M. A. H., Katsnelson, M. L. & Guinea, F. Gauge fields in graphene. Phys. Rep. 496, 109 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  159. Bueno, M. J., Furtado, C. & Carvalho, A. M. d. M. Landau levels in graphene layers with topological defects. Eur. Phys. J. B 85, 53 (2012).

    Article  ADS  Google Scholar 

  160. Ochoa, H., Zarzuela, R. & Tserkovnyak, Y. Emergent gauge fields from curvature in single layers of transition-metal dichalcogenides. Phys. Rev. Lett. 118, 026801 (2017).

    Article  ADS  Google Scholar 

  161. Pachos, I. K., Stone, M. & Temme, K. Graphene with geometrically induced vorticity. Phys. Rev. Lett. 100, 156806 (2008).

    Article  ADS  Google Scholar 

  162. Rüegg, A., Coh, S. & Moore, J. E. Corner states of topological fullerenes. Phys. Rev. B 88, 155127 (2013).

    Article  ADS  Google Scholar 

  163. Zhi, C., Bando, Y., Tang, C. & Golberg, D. Electronic structure of boron nitride cone-shaped nanostructures. Phys. Rev. B 72, 245419 (2005).

    Article  ADS  Google Scholar 

  164. Brito, E. et al. Structural and electronic properties of double-walled boron nitride nanocones. Phys. E 95, 125–131 (2018).

    Article  Google Scholar 

  165. Cortijo, A. & Vozmediano, M. A. H. Effects of topological defects and local curvature on the electronic properties of planar graphene. Nucl. Phys. B 763, 293–308 (2007).

    Article  ADS  MATH  Google Scholar 

  166. Carpio, A., Bonilla, L. L., de Juan, F. & Vozmediano, M. A. H. Dislocations in graphene. N. J. Phys. 10, 053021 (2008).

    Article  Google Scholar 

  167. Yazyev, O. V. & Louie, S. G. Topological defects in graphene: dislocations and grain boundaries. Phys. Rev. B 81, 195420 (2010).

    Article  ADS  Google Scholar 

  168. Choudhari, T. & Deo, N. Graphene with wedge disclination in the presence of intrinsic and Rashba spin orbit couplings. Europhys. Lett. 108, 57006 (2014).

    Article  ADS  Google Scholar 

  169. Xu, F., Yu, H., Sadrzadeh, A. & Yakobson, B. I. Riemann surfaces of carbon as graphene nanosolenoids. Nano Lett. 16, 34 (2016).

    Article  ADS  Google Scholar 

  170. Wang, J. et al. Synthesis of a magnetic π-extended carbon nanosolenoid with Riemann surfaces. Nat. Commun. 13, 1239 (2022).

    Article  ADS  Google Scholar 

  171. Zhao, Y. & Jin, S. Stacking and twisting of layered materials enabled by screw dislocations and non-Euclidean surfaces. Acc. Mater. Res. 3, 369–378 (2022).

    Article  Google Scholar 

  172. Karousis, N., Suarez-Martinez, I., Ewels, C. P. & Tagmatarchis, N. Structure, properties, functionalization, and applications of carbon nanohorns. Chem. Rev. 116, 4850–4883 (2016).

    Article  Google Scholar 

  173. Wang, Z. et al. Chemical selectivity at grain boundary dislocations in monolayer Mo1–xWxS2 transition metal dichalcogenides. ACS Appl. Mater. Interfaces 9, 29438–29444 (2017).

    Article  Google Scholar 

  174. Liu, L. et al. Grain-boundary-rich polycrystalline monolayer WS2 film for attomolar-level Hg2+ sensors. Nat. Commun. 12, 3870 (2021).

    Article  ADS  Google Scholar 

  175. Man, P., Srolovitz, D., Zhao, J. & Ly, T. H. Functional grain boundaries in two-dimensional transition-metal dichalcogenides. Acc. Chem. Res. 54, 4191–4202 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

Z.K.L., Y.L. and J.H.J. were supported by the National Key R&D Program of China (2022YFA1404400), the National Natural Science Foundation of China (grant no. 12125504), the “Hundred Talents Program” of the Chinese Academy of Sciences, and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions. Q.W., H.X., Y.C. and B.Z. are supported by the Singapore Ministry of Education Academic Research Fund Tier 3 grant MOE2016-T3-1-006, and Tier 2 grant MOE2019-T2-2-085.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this manuscript.

Corresponding authors

Correspondence to Baile Zhang, Yidong Chong or Jian-Hua Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Altland–Zirnbauer ‘tenfold way’

By considering the time-reversal, particle-hole and chiral symmetries and their combinations, there are 10 fundamental symmetry classes that could yield nontrivial topology.

Chern number

A quantized topological invariant of Bloch bands in the Brillouin zone for 2D and higher-dimensional systems, which are connected to the quantized Hall effect in 2D and other effects in higher dimensions.

Fractional charges

Local fractional charges bound to a TD when all the valence bands are filled.

Jackiw–Rebbi solution

Jackiw and Rebbi proposed a solution for Dirac equation with a mass domain wall, which predicts a soliton solution localized at the domain wall.

Quantum anomaly

The breakdown of effective field theory whereby the behaviour of a material contradicts its classical symmetries. For instance, chiral anomaly is that the quantum system on the edge does not have the chiral symmetry, despite that the hosting material has it.

Synthetic dimensions

Artificial dimensions created by additional degrees of freedom instead of the real-space dimensions.

Topological band theory

Theory of topological invariants of energy bands that predict topological properties from the band perspective.

Topological-bound states

States that are localized around the TDs in the system or the boundary of the system with a topological origin.

Topological bulk-edge correspondence

The relationship between the properties of the in-gap edge states and the topological properties of all the bulk bands below the gap.

Topological insulators

(TIs). Insulators with nontrivial band topology characterized by their topological invariants and the protecting symmetries.

Topological Wannier cycles

Cyclic evolution of eigenstates across bandgaps in higher-order topological insulators owing to screw dislocations or quantized gauge flux insertion.

Wannier bands

Bands formed by the evolution of Wannier centres with the wavevector along a symmetric direction in the Brillouin zone.

Zak phase

Berry phase across the Brillouin zone of 1D systems. With inversion symmetry, Zak phase is quantized to 0 or π.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, ZK., Wang, Q., Liu, Y. et al. Topological phenomena at defects in acoustic, photonic and solid-state lattices. Nat Rev Phys 5, 483–495 (2023). https://doi.org/10.1038/s42254-023-00602-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00602-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing