Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of the orbital Hall effect in a light metal Ti

Abstract

The orbital Hall effect1 refers to the generation of electron orbital angular momentum flow transverse to an external electric field. Contrary to the common belief that the orbital angular momentum is quenched in solids, theoretical studies2,3 predict that the orbital Hall effect can be strong and is a fundamental origin of the spin Hall effect4,5,6,7 in many transition metals. Despite the growing circumstantial evidence8,9,10,11, its direct detection remains elusive. Here we report the magneto-optical observation of the orbital Hall effect in the light metal titanium (Ti). The Kerr rotation by the orbital magnetic moment accumulated at Ti surfaces owing to the orbital Hall current is measured, and the result agrees with theoretical calculations semi-quantitatively and is supported by the orbital torque12 measurement in Ti-based magnetic heterostructures. This result confirms the orbital Hall effect and indicates that the orbital angular momentum is an important dynamic degree of freedom in solids. Moreover, this calls for renewed studies of the orbital effect on other degrees of freedom such as spin2,3,13,14, valley15,16, phonon17,18,19 and magnon20,21 dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustrations of the SHE, the OHE and their simulations for Ti.
Fig. 2: Measurement of orbital accumulation.
Fig. 3: Measurement of orbital torque.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

References

  1. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Orbitronics: the intrinsic orbital current in p-doped silicon. Phys. Rev. Lett. 95, 066601 (2005).

    Article  ADS  PubMed  Google Scholar 

  2. Kontani, H., Tanaka, T., Hirashima, D., Yamada, K. & Inoue, J. Giant orbital Hall effect in transition metals: origin of large spin and anomalous Hall effects. Phys. Rev. Lett. 102, 016601 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Go, D., Jo, D., Kim, C. & Lee, H.-W. Intrinsic spin and orbital Hall effects from orbital texture. Phys. Rev. Lett. 121, 086602 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213 (2015).

    Article  ADS  Google Scholar 

  7. Kimura, T., Otani, Y., Sato, T., Takahashi, S. & Maekawa, S. Room-temperature reversible spin Hall effect. Phys. Rev. Lett. 98, 156601 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Zheng, Z. et al. Magnetization switching driven by current-induced torque from weakly spin–orbit coupled Zr. Phys. Rev. Res. 2, 013127 (2020).

    Article  CAS  Google Scholar 

  9. Lee, D. et al. Orbital torque in magnetic bilayers. Nat. Commun. 12, 6710 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee, S. et al. Efficient conversion of orbital Hall current to spin current for spin–orbit torque switching. Commun. Phys. 4, 234 (2021).

    Article  Google Scholar 

  11. Hayashi, H. et al. Observation of long-range orbital transport and giant orbital torque. Commun. Phys. 6, 32 (2023).

  12. Go, D. & Lee, H.-W. Orbital torque: torque generation by orbital current injection. Phys. Rev. Res. 2, 013177 (2020).

    Article  CAS  Google Scholar 

  13. Sunko, V. et al. Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking. Nature 549, 492–496 (2017).

    Article  ADS  PubMed  Google Scholar 

  14. Park, S. R., Kim, C. H., Yu, J., Han, J. H. & Kim, C. Orbital-angular-momentum based origin of Rashba-type surface band splitting. Phys. Rev. Lett. 107, 156803 (2011).

    Article  ADS  PubMed  Google Scholar 

  15. Bhowal, S. & Vignale, G. Orbital Hall effect as an alternative to valley Hall effect in gapped graphene. Phys. Rev. B 103, 195309 (2021).

    Article  ADS  CAS  Google Scholar 

  16. Cysne, T. P. et al. Disentangling orbital and valley Hall effects in bilayers of transition metal dichalcogenides. Phys. Rev. Lett. 126, 056601 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Zhang, L. & Niu, Q. Angular momentum of phonons and the Einstein–de Haas effect. Phys. Rev. Lett. 112, 085503 (2014).

    Article  ADS  Google Scholar 

  18. Khomskii, D. I. & Streltsov, S. V. Orbital effects in solids: basics, recent progress, and opportunities. Chem. Rev. 121, 2992–3030 (2020).

    Article  PubMed  Google Scholar 

  19. Rückriegel, A. & Duine, R. A. Long-range phonon spin transport in ferromagnet–nonmagnetic insulator heterostructures. Phys. Rev. Lett. 124, 117201 (2020).

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  20. Neumann, R. R., Mook, A., Henk, J. & Mertig, I. Orbital magnetic moment of magnons. Phys. Rev. Lett. 125, 117209 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Zhang, L.-c. et al. Imprinting and driving electronic orbital magnetism using magnons. Commun. Phys. 3, 227 (2020).

    Article  Google Scholar 

  22. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Ghosh, S. & Grytsiuk, S. in Solid State Physics Vol. 71 (ed. Stamps, R. L.) 1–38 (Elsevier, 2020).

  24. Go, D., Jo, D., Lee, H.-W., Kläui, M. & Mokrousov, Y. Orbitronics: orbital currents in solids. Europhys. Lett. 135, 37001 (2021).

    Article  ADS  CAS  Google Scholar 

  25. Bhowal, S. & Satpathy, S. Intrinsic orbital moment and prediction of a large orbital Hall effect in two-dimensional transition metal dichalcogenides. Phys. Rev. B 101, 121112 (2020).

    Article  ADS  CAS  Google Scholar 

  26. Phong, V. T. et al. Optically controlled orbitronics on a triangular lattice. Phys. Rev. Lett. 123, 236403 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Tokatly, I. Orbital momentum Hall effect in p-doped graphane. Phys. Rev. B 82, 161404 (2010).

    Article  ADS  Google Scholar 

  28. Ding, S. et al. Harnessing orbital-to-spin conversion of interfacial orbital currents for efficient spin–orbit torques. Phys. Rev. Lett. 125, 177201 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Kim, J. et al. Nontrivial torque generation by orbital angular momentum injection in ferromagnetic-metal/Cu/Al2O3 trilayers. Phys. Rev. B 103, L020407 (2021).

    Article  ADS  CAS  Google Scholar 

  30. Haney, P. M., Lee, H.-W., Lee, K.-J., Manchon, A. & Stiles, M. D. Current induced torques and interfacial spin–orbit coupling: semiclassical modeling. Phys. Rev. B 87, 174411 (2013).

    Article  ADS  Google Scholar 

  31. Manchon, A. et al. Current-induced spin–orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  32. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Sala, G. & Gambardella, P. Giant orbital Hall effect and orbital-to-spin conversion in 3d, 5d, and 4f metallic heterostructures. Phys. Rev. Res. 4, 033037 (2022).

    Article  CAS  Google Scholar 

  35. Go, D. et al. Theory of current-induced angular momentum transfer dynamics in spin–orbit coupled systems. Phys. Rev. Res. 2, 033401 (2020).

    Article  CAS  Google Scholar 

  36. Xiao, J., Liu, Y. & Yan, B. in Memorial Volume for Shoucheng Zhang (eds Lian, B. et al.) 353–364 (World Scientific Publishing, 2021).

  37. Stamm, C. et al. Magneto-optical detection of the spin Hall effect in Pt and W thin films. Phys. Rev. Lett. 119, 087203 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Mak, K. F., Xiao, D. & Shan, J. Light–valley interactions in 2D semiconductors. Nat. Photon. 12, 451–460 (2018).

    Article  ADS  CAS  Google Scholar 

  39. Han, S., Lee, H.-W. & Kim, K.-W. Orbital dynamics in centrosymmetric systems. Phys. Rev. Lett. 128, 176601 (2022).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  40. Saitoh, E. et al. Observation of orbital waves as elementary excitations in a solid. Nature 410, 180–183 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Chakraborty, J., Kumar, K., Ranjan, R., Chowdhury, S. G. & Singh, S. R. Thickness-dependent fcc–hcp phase transformation in polycrystalline titanium thin films. Acta Mater. 59, 2615–2623 (2011).

    Article  ADS  CAS  Google Scholar 

  42. Marui, Y., Kawaguchi, M. & Hayashi, M. Optical detection of spin–orbit torque and current-induced heating. Appl. Phys. Express 11, 093001 (2018).

    Article  ADS  Google Scholar 

  43. Fowles, G. R. Introduction to Modern Optics 2nd edn (Dover Publications, 1989).

  44. You, C. Y. & Shin, S. C. Derivation of simplified analytic formulae for magneto‐optical Kerr effects. Appl. Phys. Lett. 69, 1315–1317 (1996).

    Article  ADS  CAS  Google Scholar 

  45. Go, D. et al. Toward surface orbitronics: giant orbital magnetism from the orbital Rashba effect at the surface of sp-metals. Sci. Rep. 7, 46742 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Salemi, L., Berritta, M., Nandy, A. K. & Oppeneer, P. M. Orbitally dominated Rashba–Edelstein effect in noncentrosymmetric antiferromagnets. Nat. Commun. 10, 5381 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Osgood Iii, R., Bader, S., Clemens, B. M., White, R. & Matsuyama, H. Second-order magneto-optic effects in anisotropic thin films. J. Magn. Magn. Mater. 182, 297–323 (1998).

    Article  ADS  Google Scholar 

  48. Montazeri, M. et al. Magneto-optical investigation of spin–orbit torques in metallic and insulating magnetic heterostructures. Nat. Commun. 6, 8958 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Fan, X. et al. All-optical vector measurement of spin-orbit-induced torques using both polar and quadratic magneto-optic Kerr effects. Appl. Phys. Lett. 109, 122406 (2016).

    Article  ADS  Google Scholar 

  50. Papaconstantopoulos, D. A. Handbook of the Band Structure of Elemental Solids (Springer, 2015).

  51. Shanavas, K., Popović, Z. S. & Satpathy, S. Theoretical model for Rashba spin–orbit interaction in d electrons. Phys. Rev. B 90, 165108 (2014).

    Article  ADS  Google Scholar 

  52. Tanaka, T. et al. Intrinsic spin Hall effect and orbital Hall effect in 4d and 5d transition metals. Phys. Rev. B 77, 165117 (2008).

    Article  ADS  Google Scholar 

  53. Jo, D., Go, D. & Lee, H.-W. Gigantic intrinsic orbital Hall effects in weakly spin–orbit coupled metals. Phys. Rev. B 98, 214405 (2018).

    Article  ADS  CAS  Google Scholar 

  54. Shi, J., Zhang, P., Xiao, D. & Niu, Q. Proper definition of spin current in spin–orbit coupled systems. Phys. Rev. Lett. 96, 076604 (2006).

    Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

H.-W.L. acknowledges P. Haney for the discussion on the crystal field effect on orbital relaxation. D.J. was supported by the Global PhD Fellowship Program by National Research Foundation of Korea (grant no. 2018H1A2A1060270). D.J., K.-H. Kim and H.-W.L. were supported by the Samsung Science and Technology Foundation (BA-1501-51). Y.-G.C., K.-H. Ko and G.-M.C. were supported by the National Research Foundation of Korea (2022R1A2C1006504). H.G.P. and B.-C.M. were supported by the KIST institutional programme and the National Research Foundation of Korea (NRF) programmes (2022M3I7A2079267 and 2020M3F3A2A01081635). C.K. was supported by the Institute for Basic Science in Korea (Grant No. IBS-R009-G2, IBS-R009-D1) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A3B1077234). Device fabrication was supported in part by Advanced Facility Center for Quantum Technology at Sungkyunkwan University.

Author information

Authors and Affiliations

Authors

Contributions

Y.-G.C., D.J. and K.-H. Ko contributed equally to this work. C.K. initiated the project, and H.-W.L. and G.-M.C. supervised the study. Y.-G.C. performed the measurement and analysis for the orbital accumulation in Ti and Pt films. K.-H. Ko performed the measurement and analysis of the orbital torque in the Ti/Ni bilayer. D.J. and D.G. prepared a theoretical formulation of the MOKE analysis. D.J. carried out the tight-binding calculations of the spin and orbital Hall conductivities of bulk Ti, analysed the MOKE signals theoretically and calculated the current-induced torque in the Ti/Ni bilayer. K.-H. Kim calculated the effective orbital Hall conductivity of Ti. K.-H. Ko, Y.-G.C. H.G.P. and B.-C.M. fabricated samples and characterized their optical, electrical and magnetic properties.

Corresponding authors

Correspondence to Gyung-Min Choi or Hyun-Woo Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 The crystalline structure of Ti films.

XRD θ-2θ scan of Ti films with the thickness of 27 (black line), 45 (red line), 63 (blue line), and 90 nm (green line). The XRD peaks at 38.4o and 44.3o indicate the (111) and (200) peaks of the face-centered-cubic phase of Ti, respectively.

Source Data

Extended Data Fig. 2 Schematic illustration of magneto-optical Kerr effect setup with electrical current injection.

Ti:sapphire laser generates a probing beam, and its direction is indicated with red triangle arrows. The probing beam is linearly polarized with the polarization direction parallel to the optical table by passing through a polarizer (Pol). Two dichroic mirrors (DM) are used for optical imaging with a CCD camera, and they are removed. The probing beam is reflected by a 5:5 beam splitter (BS) and enters an objective lens (Obj.). The beam is shifted for the off-centered incidence on the objective lens pupil to make the grazing angle of 25o with s-polarization. The reflected probing beam is collected again by the objective lens, and it is focused by another lens onto the balanced detector. Before the detector, the beam passes through a quarter-wave plate (QWP, only for the imaginary part measurement), a half-wave plate (HWP), and a Wollaston prism (WP). Polarization rotation is measured in terms of the subtracted voltage output at a pair of Si detectors, and the signal is sent to the lock-in amplifier. A current source generates an AC electric current, and the polarity of the AC current is controlled automatically by a computer-controlled relay switch. Reference signal from the current source is sent to the lock-in amplifier.

Extended Data Fig. 3 The decomposition of longitudinal and polar components of Kerr signals.

a, Probing light incidence angle dependence of the LMOKE signals of the Ti 90 nm sample. \({\theta }_{{\rm{K}}}^{{\rm{pos}}({\rm{neg}})}\) denoted by black squares (red circles) indicates the Kerr rotation with positive (negative) incidence angle. b, Decomposed polar (red circles) and longitudinal (black circles) components of the LMOKE signals. Red and black circle data denote \(({\theta }_{{\rm{K}}}^{{\rm{pos}}}+{\theta }_{{\rm{K}}}^{{\rm{neg}}})/2\) and \(({\theta }_{{\rm{K}}}^{{\rm{pos}}}-{\theta }_{{\rm{K}}}^{{\rm{neg}}})/2\), respectively. Red and black solid lines are guidelines for Oersted field and flat signal distributions, respectively.

Source Data

Extended Data Fig. 4 Fabrication process of the sap/Ti (90 nm)/Si3N4 (55 nm)/Ti (90 nm)/Si3N4 (5 nm) device.

a, sapphire substrate. b, Sputtering a Ti (90 nm)/Si3N4 (5 nm) film and making a bar pattern with a photolithography process. c, Sputtering of a Si3N4 (50 nm) film to block the orbital current. d, Sputtering second Ti (90 nm) film and making a square island with e-beam lithography. After Ti deposition, Si3N4 (5 nm) is also sputtered on the device to prevent oxidation of the top Ti layer. e, Side view of the fabricated device and measurement scheme. The red and blue arrows indicate the orbital angular momentum of electrons. The black circle arrow is the Oersted field due to \({j}_{{\rm{c}}}\). Although the orbital current is blocked by the thick Si3N4 layer, the Oersted field reaches the upper Ti layer resulting in the Oersted-field-induced net magnetization. f, An optical image of the fabricated device.

Extended Data Fig. 5 The capping layer effect of the Kerr rotation.

The current-induced Kerr rotation (θK) in the (a) sapphire substrate/Ti (90 nm)/Si3N4 (5 nm) heterostructure and (b) sapphire substrate/Ti (90 nm)/Al2O3 (5 nm) heterostructure. The Ti layer is deposited from a single element target (purity of 99.99%) using a DC sputtering. The Si3N4 and Al2O3 layers are deposited from compound targets (purity of 99.95%) using RF sputtering. The black up-triangle and blue down-triangle are θK measurements with incident angles (ϕ) of +25o and −25o, respectively, at the channel center. The negative sign of the current density (jc) is obtained by switching the source and drain connections of the AC current source. The sign reversal of θK with ± incident angles indicates that θK comes from the y-component of magnetization. From the linear fit of θK as a function of jc, we determine the current-normalized θK of 43.1 ± 3 nrad and 49.7 ± 3 nrad at jc of 107 A cm−2 for (a) and (b), respectively.

Source Data

Extended Data Fig. 6 Tight-binding calculation results for fcc Ti.

a, The electronic band structure of fcc Ti. b, The Fermi surfaces of fcc Ti. Note that there are two Fermi surfaces. The inner and outer surfaces are colored by purple and orange, respectively. c, The orbital texture on the outer Fermi surface. The color implies whether the wave function is more like \({d}_{{z}^{2}-{x}^{2}}\) than \({d}_{{zx}}\) (pink) or vice versa (green) for each crystal momentum k. d, k-resolved orbital Hall conductivity contribution from the outer Fermi surface. It is assumed that an electric field is along the x-direction. The orbital texture and the k-resolved orbital contribution for the inner Fermi surface are given in Figs. 1c and 1d, respectively. e, The orbital (blue) and spin (red) Hall conductivities as a function of the Fermi energy EF. The actual Fermi energy corresponds to EF = 0 eV.

Source Data

Supplementary information

Supplementary Information

This file contains Supplementary Sections 1–17, Figs. 1–13 and References.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, YG., Jo, D., Ko, KH. et al. Observation of the orbital Hall effect in a light metal Ti. Nature 619, 52–56 (2023). https://doi.org/10.1038/s41586-023-06101-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06101-9

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing