Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optimality guarantees for crystal structure prediction

Abstract

Crystalline materials enable essential technologies, and their properties are determined by their structures. Crystal structure prediction can thus play a central part in the design of new functional materials1,2. Researchers have developed efficient heuristics to identify structural minima on the potential energy surface3,4,5. Although these methods can often access all configurations in principle, there is no guarantee that the lowest energy structure has been found. Here we show that the structure of a crystalline material can be predicted with energy guarantees by an algorithm that finds all the unknown atomic positions within a unit cell by combining combinatorial and continuous optimization. We encode the combinatorial task of finding the lowest energy periodic allocation of all atoms on a lattice as a mathematical optimization problem of integer programming6,7, enabling guaranteed identification of the global optimum using well-developed algorithms. A single subsequent local minimization of the resulting atom allocations then reaches the correct structures of key inorganic materials directly, proving their energetic optimality under clear assumptions. This formulation of crystal structure prediction establishes a connection to the theory of algorithms and provides the absolute energetic status of observed or predicted materials. It provides the ground truth for heuristic or data-driven structure prediction methods and is uniquely suitable for quantum annealers8,9,10, opening a path to overcome the combinatorial explosion of atomic configurations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CSP using integer programming.
Fig. 2: Using integer programming to predict garnet (Ca3Al2Si3O12) and spinel (MgAl2O4) structures.
Fig. 3: Comparison between heuristic and non-heuristic exploration of a PES.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available in the paper and  Supplementary Information.

Code availability

An implementation of the integer programming encoding for the periodic lattice allocation problem and subsequent CSP is available at https://github.com/lrcfmd/ipcsp.

References

  1. Collins, C. et al. Accelerated discovery of two crystal structure types in a complex inorganic phase field. Nature 546, 280–284 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Oganov, A. R., Pickard, C. J., Zhu, Q. & Needs, R. J. Structure prediction drives materials discovery. Nat. Rev. Mater. 4, 331–348 (2019).

    Article  ADS  Google Scholar 

  3. Woodley, S. M., Day, G. M. & Catlow, R. Structure prediction of crystals, surfaces and nanoparticles. Phil. Trans. R. Soc. A 378, 20190600 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Oganov, A. R., Saleh, G. & Kvashnin, A. G. (eds) Computational Materials Discovery (Royal Society of Chemistry, 2018).

  5. Wales, D. J. Energy Landscapes: Applications to Clusters, Biomolecules and Glasses (Cambridge Univ. Press, 2003).

  6. Wolsey, L. A. Integer Programming 2nd edn (Wiley, 2020).

  7. Jünger, M. et al. 50 Years of Integer Programming 1958–2008 (Springer, 2010).

  8. Lucas, A. Ising formulations of many NP problems. Front. Phys. 2, 5 (2014).

    Article  Google Scholar 

  9. Berwald, J. J. The mathematics of quantum-enabled applications on the D-Wave quantum computer. Not. Am. Math. Soc. 66, 832–841 (2019).

    MathSciNet  MATH  Google Scholar 

  10. Mohseni, N., McMahon, P. L. & Byrnes, T. Ising machines as hardware solvers of combinatorial optimization problems. Nat. Rev. Phys. 4, 363–379 (2022).

    Article  Google Scholar 

  11. Igor, L. NIST Inorganic Crystal Structure Database (ICSD) (National Institute of Standards and Technology, 2018); https://doi.org/10.18434/M32147.

  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. The Cambridge Structural Database. Acta Crystallogr. B 72, 171–179 (2016).

    Article  CAS  Google Scholar 

  13. Woodley, S. M. & Catlow, R. Crystal structure prediction from first principles. Nat. Mater. 7, 937–946 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Adamson, D., Deligkas, A., Gusev, V. & Potapov, I. On the hardness of energy minimisation for crystal structure prediction. Fundam. Inform. 184, 181–203 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  15. Adamson, D., Deligkas, A., Gusev, V. V. & Potapov, I. The complexity of periodic energy minimisation. In 47th International Symposium on Mathematical Foundations of Computer Science (eds Szeider, S. et al.) Vol. 241, 8:1–8:15 (LIPIcs, 2022).

  16. Sipser, M. Introduction to the Theory of Computation 3rd edn (Cengage Learning, 2012).

  17. Hales, T. C. A proof of the Kepler conjecture. Ann. Math. 162, 1065–1185 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  18. Cohn, H., Kumar, A., Miller, S. D., Radchenko, D. & Viazovska, M. The sphere packing problem in dimension 24. Ann. Math. 185, 1017–1033 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  19. Papadimitriou, C. H. & Steiglitz, K. Combinatorial Optimization: Algorithms and Complexity (Prentice Hall, 1998).

  20. Goemans, M. X. Semidefinite programming in combinatorial optimization. Math. Program. 79, 143–161 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  21. Williamson, D. P. & Shmoys, D. B. The Design of Approximation Algorithms (Cambridge Univ. Press, 2011).

  22. Gurobi Optimization. Gurobi Optimizer Reference Manual (Gurobi Optimization, 2022).

  23. Kronqvist, J., Bernal, D. E., Lundell, A. & Grossmann, I. E. A review and comparison of solvers for convex MINLP. Optim. Eng. 20, 397–455 (2019).

    Article  MathSciNet  Google Scholar 

  24. Applegate, D. L., Bixby, R. E., Chvátal, V. & Cook, W. J. The Traveling Salesman Problem: A Computational Study (Princeton Univ. Press, 2011).

  25. Elf, M., Gutwenger, C., Jünger, M. & Rinaldi, G. in Computational Combinatorial Optimization. Lecture Notes in Computer Science (eds Jünger, M. & Naddef, D.) Vol. 2241, 157–222 (Springer, 2001).

  26. Havel, T. F., Kuntz, I. D. & Crippen, G. M. The combinatorial distance geometry method for the calculation of molecular conformation. I. A new approach to an old problem. J. Theor. Biol. 104, 359–381 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Achenie, L., Venkatasubramanian, V. & Gani, R. (eds) Computer Aided Molecular Design: Theory and Practice (Elsevier, 2002).

  28. Babbush, R., Perdomo-Ortiz, A., O’Gorman, B., Macready, W. & Aspuru-Guzik, A. in Advances in Chemical Physics Vol. 155, (eds Rice, S. A. & Dinner, A. R.) Ch. 5, 201–243 (John Wiley, 2014).

  29. Pörn, R., Nissfolk, O., Jansson, F. & Westerlund, T. The Coulomb glass - modeling and computational experience with a large scale 0–1 QP problem. Comput. Aided Chem. Eng. 29, 658–662 (2011).

    Article  Google Scholar 

  30. Hanselman, C. L. et al. A framework for optimizing oxygen vacancy formation in doped perovskites. Comput. Chem. Eng. 126, 168–177 (2019).

    Article  CAS  Google Scholar 

  31. Yin, X. & Gounaris, C. E. Search methods for inorganic materials crystal structure prediction. Curr. Opin. Chem. Eng. 35, 100726 (2022).

    Article  Google Scholar 

  32. Behler, J. & Csányi, G. Machine learning potentials for extended systems: a perspective. Eur. Phys. J. B 94, 142 (2021).

    Article  ADS  CAS  Google Scholar 

  33. Wang, C. et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 120, 4257–4300 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, W., Eperon, G. E. & Snaith, H. J. Metal halide perovskites for energy applications. Nat. Energy 1, 16048 (2016).

    Article  ADS  CAS  Google Scholar 

  35. Zhao, Q., Yan, Z., Chen, C. & Chen, J. Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 117, 10121–10211 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Toukmaji, A. Y. & Board, J. A.Jr. Ewald summation techniques in perspective: a survey. Comput. Phys. Commun. 95, 73–92 (1996).

    Article  ADS  CAS  MATH  Google Scholar 

  37. Andersson, S. & O’Keeffe, M. Body-centred cubic cylinder packing and the garnet structure. Nature 267, 605–606 (1977).

    Article  ADS  Google Scholar 

  38. Hyde, B. G. & Andersson, S. Inorganic Crystal Structures (Wiley, 1989).

  39. Bharti, K. et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004 (2022).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  40. Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Johnson, M. W. et al. Quantum annealing with manufactured spins. Nature 473, 194–198 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Inagaki, T. et al. A coherent Ising machine for 2000-node optimization problems. Science 354, 603–606 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. McGeoch, C. C., Harris, R., Reinhardt, S. P. & Bunyk, P. I. Practical annealing-based quantum computing. Computer 52, 38–46 (2019).

    Article  Google Scholar 

  46. Aroyo, M. I. (ed.) International Tables for Crystallography Vol. A, 6th edn, Ch. 1.3 (Wiley, 2006).

  47. Collins, C., Darling, G. R. & Rosseinsky, M. J. The Flexible Unit Structure Engine (FUSE) for probe structure-based composition prediction. Faraday Discuss. 211, 117–131 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Binks, D. J. Computational Modelling of Zinc Oxide and Related Oxide Ceramics. PhD thesis, Univ. Surrey, (1994).

  49. Pedone, A., Malavasi, G., Menziani, M. C., Cormack, A. N. & Segre, U. A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses. J. Phys. Chem. B 110, 11780–11795 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Woodley, S. M., Battle, P. D., Gale, J. D. & Catlow, C. R. A. The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation. Phys. Chem. Chem. Phys. 1, 2535–2542 (1999).

    Article  CAS  Google Scholar 

  51. Wright, K. & Jackson, R. A. Computer simulation of the structure and defect properties of zinc sulfide. J. Mater. Chem. 5, 2037–2040 (1995).

    Article  CAS  Google Scholar 

  52. Gale, J. D. & Rohl, A. L. The General Utility Lattice Program (GULP). Mol. Simul. 29, 291–341 (2003).

    Article  CAS  MATH  Google Scholar 

  53. Larsen, A. H. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Article  Google Scholar 

  54. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

  55. Boyd, S. & Vandenberghe, L. Convex Optimization (Cambridge Univ. Press, 2004).

  56. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Article  ADS  Google Scholar 

  57. Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm. Preprint at https://arxiv.org/abs/1411.4028 (2014).

  58. Hauke, P., Katzgraber, H. G., Lechner, W., Nishimori, H. & Oliver, W. D. Perspectives of quantum annealing: methods and implementations. Rep. Prog. Phys. 83, 054401 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Bian, Z. et al. Solving SAT (and MaxSAT) with a quantum annealer: foundations, encodings, and preliminary results. Inf. Comput. 275, 104609 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  60. Ajagekar, A., Humble, T. & You, F. Quantum computing based hybrid solution strategies for large-scale discrete-continuous optimization problems. Comput. Chem. Eng. 132, 106630 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Leverhulme Trust for funding through the Leverhulme Research Centre for Functional Materials Design. V.V.G. thanks M. W. Gaultois for discussions. We thank R. Savani for feedback on the paper.

Author information

Authors and Affiliations

Authors

Contributions

All authors took part in discussions to frame the use of modern optimization approaches in CSP. V.V.G. and A.D. conceptualized the idea of periodic lattice atom allocation. V.V.G. developed Ewald summation and QUBO encodings, implemented the approach and evaluated it on classical computers. D. Antypov and C.M.C. performed supplementary analysis of resulting structures. V.V.G. suggested the use of quantum annealers; V.V.G. and D. Adamson performed evaluation. V.V.G., A.D., D. Antypov, M.S.D. and M.J.R. wrote the first draft of the paper. V.V.G., D. Adamson, C.M.C., P.K., I.P., P.S. and M.J.R. wrote the final draft of the paper. All authors were involved in discussions and evaluation of drafts during the writing process. P.S. and M.J.R. directed the research.

Corresponding authors

Correspondence to Paul Spirakis or Matthew J. Rosseinsky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks C. Richard Catlow and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Table 1 The change in energy of the optimal solution of the periodic lattice atom allocation problem for SrTiO3 with g = 4 and P23 (195) space group symmetry constraint under varying unit cell size
Extended Data Table 2 The change in energy of the optimal solution of the periodic lattice atom allocation problem for MgAl2O4 with g = 8 and \({\boldsymbol{Fd}}\bar{{\bf{3}}}{\boldsymbol{m}}\,{\boldsymbol{(}}{\bf{227}}{\boldsymbol{)}}\) space group symmetry constraint under varying unit cell size
Extended Data Table 3 The change in energy of the optimal solution of the periodic lattice atom allocation problem for Y2O3 with g = 16 and \({\boldsymbol{Ia}}\bar{{\bf{3}}}\) (206) space group symmetry constraint under varying unit cell size
Extended Data Table 4 The change in energy of the optimal solution of the periodic lattice atom allocation problem for Y2Ti2O7 with g = 16 and \({\boldsymbol{Fd}}\bar{{\bf{3}}}{\boldsymbol{m}}\,{\boldsymbol{(}}{\bf{227}}{\boldsymbol{)}}\) symmetry constraint under varying unit cell size
Extended Data Table 5 The change in the optimal solution of the periodic lattice atom allocation problem under varying unit cell size for Ca3Al2Si3O12, g = 16, \({\boldsymbol{Ia}}\bar{{\bf{3}}}{\boldsymbol{d}}\) (230)
Extended Data Table 6 Buckingham potential parameters for Y2O3, Y2Ti2O7, SrO and SrTiO3 with the cut-off radius of 10Å
Extended Data Table 7 Buckingham potential parameters for MgAl2O4
Extended Data Table 8 Force-field parameters for Ca3Al2Si3O12
Extended Data Table 9 Buckingham potential parameters for ZrO2 and ZnS
Extended Data Table 10 Parameters of the quantum annealing runs

Supplementary information

Supplementary Information

This file contains the supplementary discussions and equations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusev, V.V., Adamson, D., Deligkas, A. et al. Optimality guarantees for crystal structure prediction. Nature 619, 68–72 (2023). https://doi.org/10.1038/s41586-023-06071-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06071-y

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics