Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Continuous carbon capture in an electrochemical solid-electrolyte reactor

Abstract

Electrochemical carbon-capture technologies, with renewable electricity as the energy input, are promising for carbon management but still suffer from low capture rates, oxygen sensitivity or system complexity1,2,3,4,5,6. Here we demonstrate a continuous electrochemical carbon-capture design by coupling oxygen/water (O2/H2O) redox couple with a modular solid-electrolyte reactor7. By performing oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) redox electrolysis, our device can efficiently absorb dilute carbon dioxide (CO2) molecules at the high-alkaline cathode–membrane interface to form carbonate ions, followed by a neutralization process through the proton flux from the anode to continuously output a high-purity (>99%) CO2 stream from the middle solid-electrolyte layer. No chemical inputs were needed nor side products generated during the whole carbon absorption/release process. High carbon-capture rates (440 mA cm−2, 0.137 mmolCO2 min−1 cm−2 or 86.7 kgCO2 day−1 m−2), high Faradaic efficiencies (>90% based on carbonate), high carbon-removal efficiency (>98%) in simulated flue gas and low energy consumption (starting from about 150 kJ per molCO2) were demonstrated in our carbon-capture solid-electrolyte reactor, suggesting promising practical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Our solid-electrolyte reactor design for carbon capture from different CO2 sources.
Fig. 2: Concept verification and performance evaluation of carbon capture in our solid-electrolyte reactor using standard Pt/C and IrO2 catalysts.
Fig. 3: Carbon-capture evaluation using Co-SAC.
Fig. 4: Possible approaches to improving carbon-capture energy efficiencies.

Similar content being viewed by others

Data availability

The data that support the plots in this paper and other findings of this study are available from the corresponding author on request.

References

  1. Haszeldine, R. S. Carbon capture and storage: how green can black be? Science 325, 1647–1652 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Digdaya, I. A. et al. A direct coupled electrochemical system for capture and conversion of CO2 from oceanwater. Nat. Commun. 11, 4412 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  3. Sharifian, R., Wagterveld, R. M., Digdaya, I. A., Xiang, C. & Vermaas, D. A. Electrochemical carbon dioxide capture to close the carbon cycle. Energy Environ. Sci. 14, 781–814 (2021).

    Article  CAS  Google Scholar 

  4. Renfrew, S. E., Starr, D. E. & Strasser, P. Electrochemical approaches toward CO2 capture and concentration. ACS Catal. 10, 13058–13074 (2020).

    Article  CAS  Google Scholar 

  5. Eisaman, M. D., Alvarado, L., Larner, D., Wang, P. & Littau, K. A. CO2 desorption using high-pressure bipolar membrane electrodialysis. Energy Environ. Sci. 4, 4031–4037 (2011).

    Article  CAS  Google Scholar 

  6. Gurkan, B. et al. Perspective and challenges in electrochemical approaches for reactive CO2 separations. iScience 24, 103422 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Xia, C., Xia, Y., Zhu, P., Fan, L. & Wang, H. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366, 226–231 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Leung, D. Y. C., Caramanna, G. & Maroto-Valer, M. M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 39, 426–443 (2014).

    Article  CAS  Google Scholar 

  9. Metz, B., Davidson, O., de Coninck, H., Loos, M. & Meyer, L. (eds) IPCC Special Report on Carbon Dioxide Capture and Storage (Cambridge Univ. Press, 2005).

  10. Keith, D. W., Holmes, G., St. Angelo, D. & Heidel, K. A process for capturing CO2 from the atmosphere. Joule 2, 1573–1594 (2018).

    Article  CAS  Google Scholar 

  11. Rochelle Gary, T. Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Tan, W.-L., Ahmad, A. L., Leo, C. P. & Lam, S. S. A critical review to bridge the gaps between carbon capture, storage and use of CaCO3. J. CO2 Util. 42, 101333 (2020).

    Article  CAS  Google Scholar 

  13. Trickett, C. A. et al. The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2, 17045 (2017).

    Article  CAS  ADS  Google Scholar 

  14. Lyu, H., Li, H., Hanikel, N., Wang, K. & Yaghi, O. M. Covalent organic frameworks for carbon dioxide capture from air. J. Am. Chem. Soc. 144, 12989–12995 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. McDonald, T. M. et al. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 519, 303–308 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Voskian, S. & Hatton, T. A. Faradaic electro-swing reactive adsorption for CO2 capture. Energy Environ. Sci. 12, 3530–3547 (2019).

    Article  CAS  Google Scholar 

  17. Datta, S. et al. Electrochemical CO2 capture using resin-wafer electrodeionization. Ind. Eng. Chem. Res. 52, 15177–15186 (2013).

    Article  CAS  Google Scholar 

  18. Eisaman, M. D. et al. CO2 extraction from seawater using bipolar membrane electrodialysis. Energy Environ. Sci. 5, 7346–7352 (2012).

    Article  CAS  Google Scholar 

  19. Liu, Y., Ye, H.-Z., Diederichsen, K. M., Van Voorhis, T. & Hatton, T. A. Electrochemically mediated carbon dioxide separation with quinone chemistry in salt-concentrated aqueous media. Nat. Commun. 11, 2278 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Ranjan, R. et al. Reversible electrochemical trapping of carbon dioxide using 4,4′-bipyridine that does not require thermal activation. J. Phys. Chem. Lett. 6, 4943–4946 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Willauer, H. D., DiMascio, F., Hardy, D. R. & Williams, F. W. Feasibility of CO2 extraction from seawater and simultaneous hydrogen gas generation using a novel and robust electrolytic cation exchange module based on continuous electrodeionization technology. Ind. Eng. Chem. Res. 53, 12192–12200 (2014).

    Article  CAS  Google Scholar 

  22. Eisaman, M. D. et al. CO2 separation using bipolar membrane electrodialysis. Energy Environ. Sci. 4, 1319–1328 (2011).

    Article  CAS  Google Scholar 

  23. Way, J. et al. Low voltage electrochemical process for direct carbon dioxide sequestration. J. Electrochem. Soc. 159, B627–B628 (2012).

    Article  Google Scholar 

  24. Park, H. S. et al. CO2 fixation by membrane separated NaCl electrolysis. Energies 8, 8704–8715 (2015).

    Article  CAS  Google Scholar 

  25. Youn, M. H. et al. Carbon dioxide sequestration process for the cement industry. J. CO2 Util. 34, 325–334 (2019).

    Article  CAS  Google Scholar 

  26. McCallum, C. et al. Reducing the crossover of carbonate and liquid products during carbon dioxide electroreduction. Cell Rep. Phys. Sci. 2, 100522 (2021).

    Article  CAS  Google Scholar 

  27. Sun, Y. et al. Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells. Nat. Commun. 12, 5984 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Li, J. et al. Efficient electrocatalytic CO2 reduction on a three-phase interface. Nat. Catal. 1, 592–600 (2018).

    Article  CAS  Google Scholar 

  29. Wang, H. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 354, 1031–1036 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Pande, N. et al. Electrochemically induced pH change: time-resolved confocal fluorescence microscopy measurements and comparison with numerical model. J. Phys. Chem. Lett. 11, 7042–7048 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee, M. J. et al. Understanding the bifunctional effect for removal of CO poisoning: blend of a platinum nanocatalyst and hydrous ruthenium oxide as a model system. ACS Catal. 6, 2398–2407 (2016).

    Article  CAS  Google Scholar 

  32. Liu, J. et al. Tackling CO poisoning with single-atom alloy catalysts. J. Am. Chem. Soc. 138, 6396–6399 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Peng, L., Shang, L., Zhang, T. & Waterhouse, G. I. N. Recent advances in the development of single-atom catalysts for oxygen electrocatalysis and zinc–air batteries. Adv. Energy Mater. 10, 2003018 (2020).

    Article  CAS  Google Scholar 

  34. Chung Hoon, T. et al. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 357, 479–484 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Li, F. et al. Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy Environ. Sci. 11, 2263–2269 (2018).

    Article  CAS  Google Scholar 

  36. Wu, Z.-Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 12, 2870 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Yin, P. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55, 10800–10805 (2016).

    Article  MathSciNet  CAS  Google Scholar 

  38. Holmes, G. & Keith, D. W. An air–liquid contactor for large-scale capture of CO2 from air. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 370, 4380–4403 (2012).

    Article  CAS  ADS  Google Scholar 

  39. Stolaroff, J. K., Keith, D. W. & Lowry, G. V. Carbon dioxide capture from atmospheric air using sodium hydroxide spray. Energy Environ. Sci. 42, 2728–2735 (2008).

    CAS  Google Scholar 

  40. Mahmoudkhani, M. & Keith, D. W. Low-energy sodium hydroxide recovery for CO2 capture from atmospheric air—thermodynamic analysis. Int. J. Greenh. Gas Control 3, 376–384 (2009).

    Article  CAS  Google Scholar 

  41. Rahimi, M. et al. Carbon dioxide capture using an electrochemically driven proton concentration process. Cell Rep. Phys. Sci. 1, 100033 (2020).

    Article  Google Scholar 

  42. Bakhmutova-Albert, E. V., Yao, H., Denevan, D. E. & Richardson, D. E. Kinetics and mechanism of peroxymonocarbonate formation. Inorg. Chem. 49, 11287–11296 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Shin, H., Hansen, K. U. & Jiao, F. Techno-economic assessment of low-temperature carbon dioxide electrolysis. Nat. Sustain. 4, 911–919 (2021).

    Article  Google Scholar 

  44. Wang, X. et al. Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag–Ru–Cu catalyst. Nat. Energy 7, 170–176 (2022).

    Article  ADS  Google Scholar 

  45. Xia, Y. et al. Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nat. Commun. 12, 4225 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Rice University, NSF (grant no. 2029442), the Robert A. Welch Foundation (grant no. C-2051-20200401) and the David and Lucile Packard Foundation (grant no. 2020-71371). This work was performed in part at the Shared Equipment Authority (SEA) at Rice University. The EXAFS data were collected at the SXRMB beamline at the Canadian Light Source, a national research facility of the University of Saskatchewan, which is supported by the Canada Foundation for Innovation (CFI), the Natural Sciences and Engineering Research Council (NSERC), the National Research Council (NRC), Canadian Institutes of Health Research (CIHR), Government of Saskatchewan and the University of Saskatchewan.

Author information

Authors and Affiliations

Authors

Contributions

H.W. supervised the project. H.W. and P.Z. designed the reactor system. Z.-Y.W. and P.Z. developed and performed catalyst synthesis. P.Z., C.D., A.E., Y.F., Z.F. and J.Y.(T.)K. conducted the electrochemical tests and related data processing. P.Z., F.-Y.C., A.E., M.S., Y.X. and T.-U.W. carried out materials characterization. P.Z., Z.-Y.W, A.E., T.A.H. and H.W. wrote the manuscript, with input from all authors.

Corresponding author

Correspondence to Haotian Wang.

Ethics declarations

Competing interests

P.Z., J.Y.(T.)K. and H.W. are the inventors listed on a US patent application based on this study by Rice University.

Peer review

Peer review information

Nature thanks Ian Sullivan, Ajayan Vinu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussions 1–4, Supplementary Tables 1 and 2, Supplementary Figs. 1–43 and Supplementary References—see contents page for details

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, P., Wu, ZY., Elgazzar, A. et al. Continuous carbon capture in an electrochemical solid-electrolyte reactor. Nature 618, 959–966 (2023). https://doi.org/10.1038/s41586-023-06060-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06060-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing