Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Reappraising the palaeobiology of Australopithecus

Abstract

The naming of Australopithecus africanus in 1925, based on the Taung Child, heralded a new era in human evolutionary studies and turned the attention of the then Eurasian-centric palaeoanthropologists to Africa, albeit with reluctance. Almost one hundred years later, Africa is recognized as the cradle of humanity, where the entire evolutionary history of our lineage prior to two million years ago took place—after the Homo–Pan split. This Review examines data from diverse sources and offers a revised depiction of the genus and characterizes its role in human evolution. For a long time, our knowledge of Australopithecus came from both A. africanus and Australopithecus afarensis, and the members of this genus were portrayed as bipedal creatures that did not use stone tools, with a largely chimpanzee-like cranium, a prognathic face and a brain slightly larger than that of chimpanzees. Subsequent field and laboratory discoveries, however, have altered this portrayal, showing that Australopithecus species were habitual bipeds but also practised arboreality; that they occasionally used stone tools to supplement their diet with animal resources; and that their infants probably depended on adults to a greater extent than what is seen in apes. The genus gave rise to several taxa, including Homo, but its direct ancestor remains elusive. In sum, Australopithecus had a pivotal bridging role in our evolutionary history owing to its morphological, behavioural and temporal placement between the earliest archaic putative hominins and later hominins—including the genus Homo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Variation in Australopithecus and Pan.
Fig. 2: Selected sites showing the geographical distribution of Australopithecus and other early hominins.
Fig. 3: Schematic temporal distribution of and relationships among Australopithecus species, putative ancestral and descendant taxa solely on the basis of FAD and LAD.
Fig. 4: Evidence for climbing in Australopithecus.

Similar content being viewed by others

References

  1. Dart, R. A. Australopithecus africanus: the man-ape of South Africa. Nature 115, 195–199 (1925). A pioneering study that reported on the discovery of Australopithecus and heralded the importance of Africa in the study of human evolution.

    Article  ADS  Google Scholar 

  2. Keith, A. Australopithecinæ or Dartians. Nature 159, 377–377 (1947).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Grine, F. E. in Evolutionary History of the Robust Australopithecines (ed. Grine, F. E.) 509–520 (Aldine de Gruyter, 1988).

  4. Wood, B. A. Koobi Fora Research Project: Volume 4: Hominid Cranial Remains (Clarendon Press, 1991).

  5. Wood, B. & Constantino, P. Paranthropus boisei: fifty years of evidence and analysis. Am. J. Phys. Anthropol. 134, 106–132 (2007).

    Article  Google Scholar 

  6. Johanson, D. C., White, T. D. & Coppens, Y. A new species of the genus Australopithecus (primates: Hominidae) from the Pliocene of eastern Africa. Kirtlandia 28, 1–14 (1978). A landmark paper that described and named the species Australopithecus afarensis (the “Lucy” species), which gave rise to multiple species including Homo.

  7. Asfaw, B. et al. Australopithecus garhi: a new species of early hominid from Ethiopia. Science 284, 629–635 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Berger, L. R. et al. Australopithecus sediba: a new species of Homo-like australopith from South Africa. Science 328, 195–204 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Haile-Selassie, Y. et al. New species from Ethiopia further expands Middle Pliocene hominin diversity. Nature 521, 483–488 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Brunet, M. et al. The first australopithecine 2,500 kilometres west of the Rift Valley (Chad). Nature 378, 273–275 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Leakey, M. G., Feibel, C. S., McDougall, I. & Walker, A. New four-million-year-old hominid species from Kanapoi and Allia Bay, Kenya. Nature 376, 565–571 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Clarke, R. J. Australopithecus prometheus was validly named on MLD 1. Am. J. Phys. Anthropol. 170, 479–481 (2019).

    Article  PubMed  Google Scholar 

  13. White, T. D., Johanson, D. C. & Kimbel, W. H. Australopithecus africanus: its phyletic position reconsidered. S. Afr. J. Sci. 77, 445–470 (1981).

    Google Scholar 

  14. Kimbel, W. H., Rak, Y. & Johanson, D. C. The skull of Australopithecus afarensis (Oxford University Press, 2004). A monumental monograph that described and analysed the skull of Australopithecus afarensis and how the species related to other hominin taxa.

  15. Lockwood, C. A. & Tobias, P. V. A large male hominin cranium from Sterkfontein, South Africa, and the status of Australopithecus africanus. J. Hum. Evol. 36, 637–685 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Lockwood, C. A. & Tobias, P. V. Morphology and affinities of new hominin cranial remains from Member 4 of the Sterkfontein Formation, Gauteng Province, South Africa. J. Hum. Evol. 42, 389–450 (2002). This paper described and analysed fossil material from a key South African cave and delved into morphology, affinities and variation in Australopithecus africanus.

    Article  PubMed  Google Scholar 

  17. Grine, F. E., Delanty, M. M. & Wood, B. A. in The Paleobiology of Australopithecus (eds Reed, K. E., Fleagle, J. G. & Leakey, R. E.) 125–146 (Springer, 2013).

  18. Dart, R. A. The Makapansgat proto-human Australopithecus prometheus. Am. J. Phys. Anthropol. 6, 259–284 (1948).

    Article  CAS  PubMed  Google Scholar 

  19. Broom, R. The genera and species of the South African fossil ape-men. Am. J. Phys. Anthropol. 8, 1–14 (1950).

    Article  CAS  PubMed  Google Scholar 

  20. Dart, R. A. A cleft adult mandible and the nine other lower jaw fragments from Makapansgat. Am. J. Phys. Anthropol. 20, 267–286 (1962).

    Article  CAS  PubMed  Google Scholar 

  21. Robinson, J. T. The genera and species of the australopithecinae. Am. J. Phys. Anthropol. 12, 181–200 (1954).

    Article  CAS  PubMed  Google Scholar 

  22. Le Gros Clark, W. E. Hominid characters of the australopithecine dentition. J. R. Anthropol. Inst. G. B. Irel. 80, 37–54 (1950).

    Google Scholar 

  23. Le Gros Clark, W. E. The Fossil Evidence for Human Evolution: an Introduction to the Study of Paleoanthropology (University of Chicago Press, 1964).

  24. Lockwood, C. A. Sexual dimorphism in the face of Australopithecus africanus. Am. J. Phys. Anthropol. 108, 97–127 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Robinson, J. T. Homo ‘habilis’ and the Australopithecines. Nature 205, 121–124 (1965).

    Article  ADS  Google Scholar 

  26. Tobias, P. V. Australopithecus, Homo Habilis: underestimating intraspecific varia, Tool-using and tool-making. S. Afr. Archaeol. Bull. 20, 167–192 (1965).

    Article  Google Scholar 

  27. Ahern, J. C. M. Underestimating intraspecific variation: the problem with excluding Sts 19 from Australopithecus africanus. Am. J. Phys. Anthropol. 105, 461–480 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Wood, B. & Richmond, B. G. Human evolution: taxonomy and paleobiology. J. Anat. 197, 19–60 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  29. de Heinzelin, J. et al. Environment and behavior of 2.5-million-year-old Bouri hominids. Science 284, 625–629 (1999).

    Article  ADS  PubMed  Google Scholar 

  30. Wood, B. & Boyle, E. K. Hominin taxic diversity: fact or fantasy? Am. J. Phys. Anthropol. 159, 37–78 (2016).

    Article  Google Scholar 

  31. Spoor, F. The middle Pliocene gets crowded. Nature 521, 432–433 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Spoor, F., Leakey, M. G. & O’Higgins, P. Middle Pliocene hominin diversity: Australopithecus deyiremeda and Kenyanthropus platyops. Philos. Trans. R. Soc. B 371, 20150231 (2016).

    Article  Google Scholar 

  33. Leakey, M. G. et al. New hominin genus from eastern Africa shows diverse middle Pliocene lineages. Nature 410, 433–440 (2001). A crucial article that named and characterized a new genus (Kenyanthropus) and species (platyops) on the basis of discoveries in Kenya, suggesting that hominins were more diverse in the Middle Pliocene than was previously thought.

    Article  ADS  CAS  PubMed  Google Scholar 

  34. White, T. Early hominids–diversity or distortion? Science 299, 1994–1997 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Spoor, F., Leakey, M. G. & Leakey, L. N. Hominin diversity in the Middle Pliocene of eastern Africa: the maxilla of KNM-WT 40000. Philos. Trans. R. Soc. B 365, 3377–3388 (2010).

    Article  Google Scholar 

  36. Kimbel, W. et al. Was Australopithecus anamensis ancestral to A. afarensis? A case of anagenesis in the hominin fossil record. J. Hum. Evol. 51, 134–152 (2006). A key study that analysed the combined Australopithecus afarensis and Australopithecus anamensis hypodigm and proposed a phylogenetic proximity between the two species using an anagenetic model.

    Article  PubMed  Google Scholar 

  37. Kimbel, W. H. in Handbook of Paleoanthropology (eds Henke, W. & Tattersall, I.) 1539–1573 (Springer, 2015).

  38. Haile-Selassie, Y., Melillo, S. M., Vazzana, A., Benazzi, S. & Ryan, T. M. A 3.8-million-year-old hominin cranium from Woranso-Mille, Ethiopia. Nature 573, 214–219 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Ward, C. V. in The Paleobiology of Australopithecus (eds Reed, K. E., Fleagle, J. G. & Leakey, R. E.) 235–245 (Springer, 2013). A synthesis of the postural and locomotor adaptations of the many taxa in Australopithecus and implications for the broader understanding of early hominin evolution.

  40. Haile-Selassie, Y. Phylogeny of early Australopithecus: new fossil evidence from the Woranso-Mille (central Afar, Ethiopia). Philos. Trans. R. Soc. B 365, 3323–3331 (2010).

    Article  Google Scholar 

  41. Haile-Selassie, Y. et al. A new hominin foot from Ethiopia shows multiple Pliocene bipedal adaptations. Nature 483, 565–569 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Haile-Selassie, Y., Melillo, S. M. & Su, D. F. The Pliocene hominin diversity conundrum: do more fossils mean less clarity? Proc. Natl Acad. Sci. USA 113, 6364–6371 (2016). This paper discussed the key issue of hominin diversity in the Middle Pliocene in the light of discoveries from the Woranso-Mille site in Afar, Ethiopia.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. White, T. D. et al. Asa Issie, Aramis and the origin of Australopithecus. Nature 440, 883–889 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Pickering, R. et al. Australopithecus sediba at 1.977 Ma and implications for the origins of the genus Homo. Science 333, 1421–1423 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. White, T. D. et al. Ardipithecus ramidus and the paleobiology of early hominids. Science 326, 64–86 (2009). This and other related papers in the same volume described the importance and role of Ardipithecus ramidus in human evolution and provided a detailed account of its paleobiology.

    Article  ADS  Google Scholar 

  46. Villmoare, B. et al. Early Homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia. Science 347, 1352–1355 (2015). A paper describing and analysing the earliest evidence for the genus Homo dating back to 2.8 Ma.

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Kimbel, W. H. & Delezene, L. K. “Lucy” redux: a review of research on Australopithecus afarensis. Am. J. Phys. Anthropol. 140, 2–48 (2009).

    Article  PubMed  Google Scholar 

  48. Semaw, S. et al. Early Pliocene hominids from Gona, Ethiopia. Nature 433, 301–305 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Du, A., Rowan, J., Wang, S. C., Wood, B. A. & Alemseged, Z. Statistical estimates of hominin origination and extinction dates: a case study examining the Australopithecus anamensisafarensis lineage. J. Hum. Evol. 138, 102688 (2020).

    Article  PubMed  Google Scholar 

  50. Bobe, R. & Wood, B. Estimating origination times from the early hominin fossil record. Evol. Anthropol. 31, 92–102 (2021).

    Article  PubMed  Google Scholar 

  51. Wood, B. & Harrison, T. The evolutionary context of the first hominins. Nature 470, 347–352 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Strait, D. S. in The Paleobiology of Australopithecus (eds Reed, K. E., Fleagle, J. G. & Leakey, R. E.) 183–191 (Springer, 2013).

  53. Granger, D. E. et al. Cosmogenic nuclide dating of Australopithecus at Sterkfontein, South Africa. Proc. Natl Acad. Sci. USA 119, e2123516119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rak, Y., Ginzburg, A. & Geffen, E. Gorilla-like anatomy on Australopithecus afarensis mandibles suggests Au. afarensis link to robust australopiths. Proc. Natl Acad. Sci. USA 104, 6568–6572 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Braga, J. et al. Cochlear shape distinguishes southern African early hominin taxa with unique auditory ecologies. Sci. Rep. 11, 17018 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Crouch, N. M. A., Edie, S. M., Collins, K. S., Bieler, R. & Jablonski, D. Calibrating phylogenies assuming bifurcation or budding alters inferred macroevolutionary dynamics in a densely sampled phylogeny of bivalve families. Proc. R. Soc. B 288, 20212178 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pearson, P. N. Speciation and extinction asymmetries in paleontological phylogenies: evidence for evolutionary progress. Paleobiology 24, 305–335 (1998).

    Google Scholar 

  58. Mongle, C. S., Strait, D. S. & Grine, F. E. Expanded character sampling underscores phylogenetic stability of Ardipithecus ramidus as a basal hominin. J. Hum. Evol. 131, 28–39 (2019).

    Article  PubMed  Google Scholar 

  59. Lockwood, C. in The Paleobiology of Australopithecus (eds Reed, K. E., Fleagle, J. G. & Leakey, R. E.) 175–182 (Springer, 2013).

  60. Raymo, M. E. The initiation of Northern Hemisphere glaciation. Annu. Rev. Earth Planet. Sci. 22, 353–383 (1994).

    Article  ADS  Google Scholar 

  61. Liddy, H. M., Feakins, S. J. & Tierney, J. E. Cooling and drying in northeast Africa across the Pliocene. Earth Planet. Sci. Lett. 449, 430–438 (2016).

    Article  ADS  CAS  Google Scholar 

  62. Boisserie, J.-R., Fisher, R. E., Lihoreau, F. & Weston, E. M. Evolving between land and water: key questions on the emergence and history of the Hippopotamidae (Hippopotamoidea, Cetancodonta, Cetartiodactyla). Biol. Rev. 86, 601–625 (2011).

    Article  PubMed  Google Scholar 

  63. Rowan, J. & Reed, K. Endemism and dispersal in East African bovidae from thelate Miocene through the recent. J. Vertebr. Paleontol. 33, 201 (2013).

    Google Scholar 

  64. Lorenzen, E. D., Heller, R. & Siegismund, H. R. Comparative phylogeography of African savannah ungulates. Mol. Ecol. 21, 3656–3670 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Bobe, R., Manthi, F. K., Ward, C. V., Plavcan, J. M. & Carvalho, S. The ecology of Australopithecus anamensis in the early Pliocene of Kanapoi, Kenya. J. Hum. Evol. 140, 102717 (2020).

    Article  PubMed  Google Scholar 

  66. Dumouchel, L., Bobe, R., Wynn, J. G. & Barr, W. A. The environments of Australopithecus anamensis at Allia Bay, Kenya: a multiproxy analysis of early Pliocene Bovidae. J. Hum. Evol. 151, 102928 (2021).

    Article  PubMed  Google Scholar 

  67. Behrensmeyer, A. K. & Reed, K. E.in The Paleobiology of Australopithecus (eds Reed, K. E., Fleagle, J. G. & Leakey, R. E.) 41–60 (Springer, 2013).

  68. Fillion, E. N., Harrison, T. & Kwekason, A. A nonanalog Pliocene ungulate community at Laetoli with implications for the paleoecology of Australopithecus afarensis. J. Hum. Evol. 167, 103182 (2022).

    Article  PubMed  Google Scholar 

  69. Campisano, C. J. Tephrostratigraphy and Hominin Paleoenvironments of the Hadar Formation, Afar Depression, Ethiopia. PhD thesis, Rutgers Univ. https://doi.org/10.7282/T3NS0V99 (2007).

  70. Alemseged, Z. et al. Fossils from Mille-Logya, Afar, Ethiopia, elucidate the link between Pliocene environmental changes and Homo origins. Nat. Commun. 11, 2480 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Geraads, D. et al. Plio-Pleistocene mammals from Mille-Logya, Ethiopia, and the post-Hadar faunal change. J. Quat. Sci. 36, 1073–1089 (2021).

    Article  Google Scholar 

  72. DiMaggio, E. N. et al. Late Pliocene fossiliferous sedimentary record and the environmental context of early Homo from Afar, Ethiopia. Science 347, 1355–1359 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  73. deMenocal, P. B. Plio-Pleistocene African climate. Science 270, 53–59 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  74. deMenocal, P. B. African climate change and faunal evolution during the Pliocene–Pleistocene. Earth Planet. Sci. Lett. 220, 3–24 (2004).

    Article  ADS  CAS  Google Scholar 

  75. Vrba, E. S. in Paleoclimate and Evolution, with Emphasis on Human Origins (eds Vrba, E. S., Denton, G. H., Partridge, T. C. & Burckle, L. H.) 197–448 (Yale University Press, 1995).

  76. Joordens, J. C. A., Feibel, C. S., Vonhof, H. B., Schulp, A. S. & Kroon, D. Relevance of the eastern African coastal forest for early hominin biogeography. J. Hum. Evol. 131, 176–202 (2019).

    Article  PubMed  Google Scholar 

  77. Dart, R. The osteodontokeratic culture of Australopithecus prometheus. Transvaal Museum Memoirs 10, 87–101 (1957).

    Google Scholar 

  78. Ungar, P. S. & Sponheimer, M. The diets of early hominins. Science 334, 190–193 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Teaford, M. F. & Ungar, P. S. Diet and the evolution of the earliest human ancestors. Proc. Natl Acad. Sci. USA 97, 13506–13511 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Grine, F. E., Ungar, P. S. & Teaford, M. F. Was the early Pliocene hominin ‘Australopithecus’ anamensis a hard object feeder? S. Afr. J. Sci 102, 301–310 (2006).

    Google Scholar 

  81. Levin, N. E., Haile-Selassie, Y., Frost, S. R. & Saylor, B. Z. Dietary change among hominins and cercopithecids in Ethiopia during the early Pliocene. Proc. Natl Acad. Sci. USA 112, 12304–12309 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Alemseged, Z. Stable isotopes serving as a checkpoint. Proc. Natl Acad. Sci. USA 112, 12232–12233 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wynn, J. G. et al. Diet of Australopithecus afarensis from the Pliocene Hadar Formation, Ethiopia. Proc. Natl Acad. Sci. USA 110, 10495–10500 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sponheimer, M. et al. Isotopic evidence of early hominin diets. Proc. Natl Acad. Sci. USA 110, 10513–10518 (2013).

    Article  ADS  CAS  PubMed Central  Google Scholar 

  85. McPherron, S. P. et al. Evidence for stone-tool-assisted consumption of animal tissues before 3.39 million years ago at Dikika, Ethiopia. Nature 466, 857–860 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Alemseged, Z. In First humans: Who was who, who did what, where and when? [English] (eds Coppens, Y. & Vialet, A.) 101–122 (CNRS Editions, 2021).

  87. Harmand, S. et al. 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature 521, 310–315 (2015). A study on the discovery of the earliest stone tools dating to 3.3 Ma, which led to the naming of the Lomekiwian—a stone-tool-technology stage before the Oldowan.

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Skinner, M. M. et al. Human-like hand use in Australopithecus africanus. Science 347, 395–399 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  89. Granger, D. E. et al. New cosmogenic burial ages for Sterkfontein Member 2 Australopithecus and Member 5 Oldowan. Nature 522, 85–88 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  90. Thompson, J. C., Carvalho, S., Marean, C. W. & Alemseged, Z. Origins of the human predatory pattern: the transition to large-animal exploitation by early hominins. Curr. Anthropol. 60, 1–23 (2019).

    Article  Google Scholar 

  91. Bonnefille, R., Potts, R., Chalie, F., Jolly, D. & Peyron, O. High-resolution vegetation and climate change associated with Pliocene Australopithecus afarensis. Proc. Natl Acad. Sci. USA 101, 12125–12129 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lovejoy, C. O. The natural history of human gait and posture part 3: the knee. Gait Posture 25, 325–341 (2007).

    Article  PubMed  Google Scholar 

  93. Lovejoy, C. O. Evolution of human walking. Sci. Am. 259, 118–125 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  94. Day, M. H. & Wickens, E. H. Laetoli Pliocene hominid footprints and bipedalism. Nature 286, 385–387 (1980).

    Article  ADS  Google Scholar 

  95. White, T. D. Evolutionary implications of Pliocene hominid footprints. Science 208, 175–176 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  96. Stern, J. T. Jr & Susman, R. L. The locomotor anatomy of Australopithecus afarensis. Am. J. Phys. Anthropol. 60, 279–317 (1983).

    Article  PubMed  Google Scholar 

  97. Susman, R. L., Jack, T., Stern, J. & Jungers, W. L. Arboreality and bipedality in the Hadar hominids. Folia Primatol. 43, 113–156 (1984).

    Article  CAS  Google Scholar 

  98. Aiello, L. & Dean, C. An Introduction to Human Evolutionary Anatomy (Academic Press, 1990).

  99. Stern, J. T. Climbing to the top: a personal memoir of Australopithecus afarensis. Am. J. Phys. Anthropol. 60, 279–317 (1983).

    PubMed  Google Scholar 

  100. Ward, C. V. Interpreting the posture and locomotion of Australopithecus afarensis: where do we stand? Am. J. Phys. Anthropol. 119, 185–215 (2002).

    Article  Google Scholar 

  101. Senut, B. & Tardieu, C. in Ancestors: the Hard Evidence (ed. Delson, E.) 193–201 (Alan R. Liss, 1985).

  102. McHenry, H. M. Biomechanical interpretation of the early hominid hip. J. Hum. Evol. 4, 343–355 (1975).

    Article  Google Scholar 

  103. Lovejoy, C. O. Reexamining human origins in light of Ardipithecus ramidus. Science 326, 74–74e8 (2009).

    Article  ADS  Google Scholar 

  104. Lovejoy, C. O., Suwa, G., Spurlock, L., Asfaw, B. & White, T. D. The pelvis and femur of Ardipithecus ramidus: the emergence of upright walking. Science 326, 71–71e6 (2009).

    Article  ADS  Google Scholar 

  105. Stern, J. T. Climbing to the top: a personal memoir of Australopithecus afarensis. Evol. Anthropol. 9, 113–133 (2000).

    Article  Google Scholar 

  106. Jungers, W. L. Lucy’s limbs: skeletal allometry and locomotion in Australopithecus afarensis. Nature 297, 676–678 (1982).

    Article  ADS  Google Scholar 

  107. Tardieu, C. in Current Perspectives in Primate Biology (eds Taub, D. M. & King, F. A.) 182–192 (Van Nostrand Reinhold, 1986).

  108. Green, D. J. & Alemseged, Z. Australopithecus afarensis: scapular ontogeny, function, and the role of climbing in human evolution. Science 338, 514–517 (2012). This study showed the importance of character plasticity during ontogeny and how that relates to locomotor adaptation in living apes and early hominins on the basis of the scapula, and helped to document the importance of arboreality in Australopithecus.

    Article  ADS  CAS  PubMed  Google Scholar 

  109. Latimer, B., Ohman, J. C. & Lovejoy, C. O. Talocrural joint in African hominoids: implications for Australopithecus afarensis. Am. J. Phys. Anthropol. 74, 155–175 (1987).

    Article  CAS  PubMed  Google Scholar 

  110. Latimer, B. In The origin of bipedality in Hominids [English]. (eds Coppens, Y. & Senut, B.) 169–176 (CNRS, 1991).

  111. Lovejoy, C. O., Heiple, K. G. & Burstein, A. H. The gait of Australopithecus. Am. J. Phys. Anthropol. 38, 757–779 (1973).

    Article  CAS  PubMed  Google Scholar 

  112. Ward, C. V., Kimbel, W. H. & Johanson, D. C. Complete fourth metatarsal and arches in the foot of Australopithecus afarensis. Science 331, 750–753 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  113. Rolian, C., Lieberman, D. E., Hamill, J., Scott, J. W. & Werbel, W. Walking, running and the evolution of short toes in humans. J. Exp. Biol. 212, 713–721 (2009).

    Article  PubMed  Google Scholar 

  114. Holowka, N. B. & Lieberman, D. E. Rethinking the evolution of the human foot: insights from experimental research. J. Exp. Biol. 221, jeb174425 (2018).

    Article  PubMed  Google Scholar 

  115. Larson, S. Did australopiths climb trees? Science 338, 478–479 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  116. Richmond, B. G. Biomechanics of phalangeal curvature. J. Hum. Evol. 53, 678–690 (2007).

    Article  PubMed  Google Scholar 

  117. Green, D. J. Ontogeny of the hominoid scapula: the influence of locomotion on morphology: ontogeny of hominoid scapular morphology and locomotion. Am. J. Phys. Anthropol. 152, 239–260 (2013).

    PubMed  Google Scholar 

  118. DeSilva, J. M., Gill, C. M., Prang, T. C., Bredella, M. A. & Alemseged, Z. A nearly complete foot from Dikika, Ethiopia and its implications for the ontogeny and function of Australopithecus afarensis. Sci. Adv. 4, eaar7723 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  119. Green, D. J., Gordon, A. D. & Richmond, B. G. Limb-size proportions in Australopithecus afarensis and Australopithecus africanus. J. Hum. Evol. 52, 187–200 (2007).

    Article  PubMed  Google Scholar 

  120. Prabhat, A. M. et al. Homoplasy in the evolution of modern human-like joint proportions in Australopithecus afarensis. eLife 10, e65897 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Spoor, F., Wood, B. & Zonneveld, F. Implications of early hominid labyrinthine morphology for evolution of human bipedal locomotion. Nature 369, 645–648 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  122. Alemseged, Z. et al. A juvenile early hominin skeleton from Dikika, Ethiopia. Nature 443, 296–301 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  123. Kivell, T. L., Davenport, R., Hublin, J.-J., Thackeray, J. F. & Skinner, M. M. Trabecular architecture and joint loading of the proximal humerus in extant hominoids, Ateles, and Australopithecus africanus. Am. J. Phys. Anthropol. 167, 348–365 (2018).

    Article  PubMed  Google Scholar 

  124. Dunmore, C. J. et al. The position of Australopithecus sediba within fossil hominin hand use diversity. Nat. Ecol. Evol. 4, 911–918 (2020).

    Article  PubMed  Google Scholar 

  125. Doran, D. M. Ontogeny of locomotion in mountain gorillas and chimpanzees. J. Hum. Evol. 32, 323–344 (1997).

    Article  CAS  PubMed  Google Scholar 

  126. Asfaw, B. et al. Australopithecus garhi: a new species of early hominid from Ethiopia. Science 284, 629–635 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  127. Churchill, S. E. et al. The upper limb of Australopithecus sediba. Science 340, 1233477 (2013).

    Article  PubMed  Google Scholar 

  128. Kivell, T. L., Kibii, J. M., Churchill, S. E., Schmid, P. & Berger, L. R. Australopithecus sediba hand demonstrates mosaic evolution of locomotor and manipulative abilities. Science 333, 1411–1417 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  129. McNutt, E. J. et al. Footprint evidence of early hominin locomotor diversity at Laetoli, Tanzania. Nature 600, 468–471 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  130. DeSilva, J. M. et al. The lower limb and mechanics of walking in Australopithecus sediba. Science 340, 1232999 (2013).

    Article  PubMed  Google Scholar 

  131. Lovejoy, C. O. The origin of man. Science 211, 341–350 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  132. McHenry, H. M. in The Archaeology of Human Ancestry: Power, Sex and Tradition (eds Shennan, S. & Steele, J.) 82–99 (Routledge, 1996).

  133. Plavcan, J. M. & van Schaik, C. P. Interpreting hominid behavior on the basis of sexual dimorphism. J. Hum. Evol. 32, 345–374 (1997).

    Article  CAS  PubMed  Google Scholar 

  134. Plavcan, J. M., Lockwood, C. A., Kimbel, W. H., Lague, M. R. & Harmon, E. H. Sexual dimorphism in Australopithecus afarensis revisited: how strong is the case for a human-like pattern of dimorphism? J. Hum. Evol. 48, 313–320 (2005).

    Article  PubMed  Google Scholar 

  135. Reno, P. L., Meindl, R. S., McCollum, M. A. & Lovejoy, C. O. Sexual dimorphism in Australopithecus afarensis was similar to that of modern humans. Proc. Natl Acad. Sci. USA 100, 9404–9409 (2003).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  136. Reno, P. L. & Lovejoy, C. O. From Lucy to Kadanuumuu: balanced analyses of Australopithecus afarensis assemblages confirm only moderate skeletal dimorphism. PeerJ 3, e925 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Hylander, W. L. Functional links between canine height and jaw gape in catarrhines with special reference to early hominins. Am. J. Phys. Anthropol. 150, 247–259 (2013).

    Article  PubMed  Google Scholar 

  138. Gordon, A. D. in The Paleobiology of Australopithecus (eds Reed, K. E., Fleagle, J. G. & Leakey, R. E.) 195–212 (Springer, 2013).

  139. Gunz, P. et al. Australopithecus afarensis endocasts suggest ape-like brain organization and prolonged brain growth. Sci. Adv. 6, eaaz4729 (2020). A study showing that some incipient human-like childhood existed in Australopithecus afarensis, which had a small brain and a chimp-like brain organization.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  140. Dunsworth, H. M., Warrener, A. G., Deacon, T., Ellison, P. T. & Pontzer, H. Metabolic hypothesis for human altriciality. Proc. Natl Acad. Sci. USA 109, 15212–15216 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ward, C., Leakey, M. & Walker, A. The new hominid species Australopithecus anamensis. Evol. Anthropol. 7, 197–205 (1999).

    Article  Google Scholar 

  142. White, T. D. New fossil hominids from Laetolil, Tanzania. Am. J. Phys. Anthropol. 46, 197–229 (1977).

    Article  CAS  PubMed  Google Scholar 

  143. Alemseged, Z. in The Cambridge World Prehistory (eds Renfrew, C. & Bahn, P.) 47–64 (Cambridge University Press, 2014).

  144. Walker, A., Leakey, R. E., Harris, J. M. & Brown, F. H. 2.5-Myr Australopithecus boisei from west of Lake Turkana, Kenya. Nature 322, 517–522 (1986).

    Article  ADS  Google Scholar 

  145. Schroer, K. & Kufeldt, C. in Encyclopedia of Global Archaeology (ed. Smith, C.) 2870–2882 (Springer, 2014).

  146. DeSilva, J., McNutt, E., Benoit, J. & Zipfel, B. One small step: a review of Plio-Pleistocene hominin foot evolution. Am. J. Phys. Anthropol. 168, 63–140 (2018).

    Article  PubMed  Google Scholar 

  147. Haile-Selassie, Y. Late Miocene hominids from the Middle Awash, Ethiopia. Nature 412, 178–181 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  148. Daver, G. et al. Postcranial evidence of late Miocene hominin bipedalism in Chad. Nature 609, 94–100 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  149. Brunet, M. et al. A new hominid from the Upper Miocene of Chad, Central Africa. Nature 418, 145–151 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  150. Lacruz, R. S. et al. Distinct growth of the nasomaxillary complex in Au. sediba. Sci. Rep. 5, 15175 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank my postdoctoral advisor B. Kimbel and my PhD co-advisor Y. Coppens for their mentorship; B. Wood, R. Bobe, F. Spoor, J. Braga, D. Reed and D. Jablonski for feedback on earlier versions of this paper or for discussions; Y. Haile-Selassie, F. Spoor and F. McGechie for supplying images; and R. Van Sessen for help with the figures and formatting. I am grateful to all of the field and laboratory researchers who made the knowledge included in this Review available. I thank M. and W. Hearst for supporting my research activities that have contributed towards and inspired the writing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeresenay Alemseged.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature thanks Jeremy DeSilva and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alemseged, Z. Reappraising the palaeobiology of Australopithecus. Nature 617, 45–54 (2023). https://doi.org/10.1038/s41586-023-05957-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-05957-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing