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            Abstract
Biomolecular condensates formed by phase separation can compartmentalize and regulate cellular processes1,2. Emerging evidence has suggested that membraneless subcellular compartments in virus-infected cells form by phase separation3,4,5,6,7,8. Although linked to several viral processes3,4,5,9,10, evidence that phase separation contributes functionally to the assembly of progeny particles in infected cells is lacking. Here we show that phase separation of the human adenovirus 52-kDa protein has a critical role in the coordinated assembly of infectious progeny particles. We demonstrate that the 52-kDa protein is essential for the organization of viral structural proteins into biomolecular condensates. This organization regulates viral assembly such that capsid assembly is coordinated with the provision of viral genomes needed to produce complete packaged particles. We show that this function is governed by the molecular grammar of an intrinsically disordered region of the 52-kDa protein, and that failure to form condensates or to recruit viral factors that are critical for assembly results in failed packaging and assembly of only non-infectious particles. Our findings identify essential requirements for coordinated assembly of progeny particles and demonstrate that phase separation of a viral protein is critical for production of infectious progeny during adenovirus infection.
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                    Fig. 1: The viral 52K and capsid proteins form NBs with characteristics of dynamic BMCs.


Fig. 2: The 52K protein is an essential organizing component of viral BMCs.


Fig. 3: Molecular grammar of an IDR of the 52K protein governs phase separation and the dynamic nature of condensates.


Fig. 4: Organization of viral proteins at BMCs is required for coordinated assembly of packaged progeny particles.
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Extended data figures and tables

Extended Data Fig. 1 Localization of viral proteins in the adenovirus infected nucleus.
Uninfected or infected (AdV) human bronchial epithelial cells as indicated (hours post-infection, hpi). a, Localization of indicated viral proteins in uninfected or WT adenovirus infected (AdV) human bronchial epithelial cells at 22 hpi. b, Localization of HPG-labeled protein synthesized within 30â€‰min prior to fixation. Viral nuclear bodies and viral replication compartments are marked by immunostaining of 52K or DBP, respectively. Zoom shows magnified 10 x 10 Î¼m area corresponding to dotted white box. Line profile corresponding to dotted black line indicates lack of co-localization between 52K and DBP. c, Localization of 52K to viral nuclear bodies in cells infected at a multiplicity of infection (MOI) of 0.01, 0.1, 1, or 10Â plaque forming units per cell. d, Localization of heat shock cognate 70 (Hsc70) in relation to 52K. All scale bars = 10 Âµm, outlines of nuclei (doted white lines) are shown (a,c,d).
Source Data


Extended Data Fig. 2 Additional characterization of viral nuclear bodies.
a, Wide view immunofluorescence images of nuclear bodies (52K) and viral replication compartments (DBP) in WT adenovirus infected (AdV) human bronchial epithelial cells incubated with or without 10% 1,6-hexanediol corresponding to single nuclei images presented in Fig. 1g. bâ€“h, Uninfected or WT adenovirus infected doxycycline-inducible transgenic A549 lung cells. b, Expression of transgenes (GFP, 52K-GFP) with or without induction by addition of doxycycline (DOX) in relation to endogenous 52K. GAPDH is included as a sample processing control. c, Localization of ectopically expressed 52K-GFP to nuclear bodies shown by co-staining of endogenous IIIa. d, Localization of ectopically expressed GFP and endogenous IIIa. e, Half time of fluorescence recovery of nuclear diffuse 52K-GFP in uninfected cells corresponding to (f), or nuclear bodies in WT adenovirus infected cells corresponding to Fig. 1h,i. Three independent repeats pooled with a total of 15 (uninfected) or 22 (nuclear bodies) bleached regions analyzed. Mean (columns) and standard deviation (error bars) shown. f, Fluorescence recovery after photobleaching of nuclear diffuse 52K-GFP in uninfected cells. Three independent repeats pooled with replicates representing 15 bleached regions (green lines) and mean (black line) shown. g, % fluorescence recovery of nuclear diffuse 52K-GFP in uninfected cells corresponding to (f), or nuclear bodies in WT adenovirus infected cells corresponding to Fig. 1h,i. Three independent repeats pooled with a total of 15 (uninfected) or 22 (nuclear bodies) bleached regions analyzed. Mean (columns) and standard deviation (error bars) shown. h, Fusion events observed per cell. Eight cells were imaged for five minutes. Image scale bars = 10 Î¼m, outlines of nuclei (doted white lines) shown (a,c,d). Unpaired two-sided Studentâ€™s t-test (e,g), ns pâ€‰>â€‰0.05, **** pâ€‰<â€‰0.0001. Additional statistics including exact P values are included inÂ Supplementary Notes. Gel source data are included in Supplementary Fig. 1.
Source Data


Extended Data Fig. 3 Supporting data corresponding to in vitro phase-separation of the 52K protein.
a, SDS-PAGE and Coomassie staining of protein showing cleavage of the MBP tag from WT 52K, or IDR mutants (Î”1-119, R/K, Scramble, P/A, Q/G) by addition of tobacco etch virus (TEV) protease at a ratio of 1:25 and incubation at 25â€‰Â°C for 1 h. b, In vitro phase-separation of WT 52K or IDR mutants at the indicated protein concentrations. c, SDS-PAGE and Coomassie staining of protein showing cleavage of MBP tag from IIIa by addition of TEV protease at a ratio of 1:25 and incubation at 25â€‰Â°C for 1 h. d, In vitro phase-separation of IIIa at indicated concentrations. All image scale bars = 10 Î¼m. Gel source data are included in Supplementary Fig. 1.


Extended Data Fig. 4 Additional characterization of the Î”52K mutant adenovirus.
a, CsCl gradient purification of adenovirus particles from WT or Î”52K adenovirus infected 293 cells. Incomplete and packaged particles are indicated. b, Examples of diffuse, nuclear body, and peripheral localization of IIIa in human bronchial epithelial cells infected with WT or Î”52K adenovirus. Outlines of nuclei (dotted white lines) are shown, image scale bar = 10 Î¼m. c, Quantification (%) of WT or Î”52K adenovirus infected human bronchial epithelial cells corresponding to each localization phenotype presented in (b). Three independent repeats plotted, with mean (columns) and standard deviation (error bars) shown. UnpairedÂ two-sidedÂ Welchâ€™s t-tests (c). ns pâ€‰>â€‰0.05, * pâ€‰<â€‰0.05, *** pâ€‰<â€‰0.001. Additional statistics including exact P values are included inÂ Supplementary Notes.
Source Data


Extended Data Fig. 5 In silico analysis of the 52K protein.
aâ€“c, analysis of amino acid composition of the 52K protein. a, Predictions of fold-index, hydrophobicity, fraction of charged residues (FCR), and net charge per residue (NCPR). b, Amino acid frequency corresponding to full length 52K or the N-terminal 145 amino acids compared to the mean frequency of proteins in the human proteome (Human; nâ€‰=â€‰20371 proteins) or protein phase separation database (PPS; nâ€‰=â€‰90 proteins). Mean (columns) and standard deviation (error bars) are shown. c, Amino acid frequency of the N-terminal region (1-145) compared to the C-terminal region (146-415). d, Net charge per residue (NCPR) comparing the N-terminal region 1-145 to the corresponding region of the scramble mutant. e, Alignment corresponding to amino acids 1-145 of WT 52K or IDR mutants (R/K, Scramble, P/A, Q/G). Mutated amino acids are highlighted.
Source Data


Extended Data Fig. 6 Supporting data corresponding to fluorescence recovery after photobleaching of ectopic nuclear bodies.
HEK 293T cells transiently expressing GFP-tagged WT or mutant (P/A, Q/G) 52K, corresponding to the experiment presented in Fig. 3gâ€“i. a, Western blots showing transient expression. GAPDH is included as a sample processing control. b, Examples of fluorescence recovery after photobleaching, prior to photobleaching (pre-bleach), immediately after photobleaching (bleach) or following recovery (post-bleach). Targeted nuclear bodies are indicated by yellow arrows. Gel source data including additional loading controls are included in Supplementary Fig. 1.


Extended Data Fig. 7 Supporting data corresponding to late-phase reorganization of the adenovirus-infected nucleus.
a-f, Uninfected or WT adenovirus infected (AdV) human bronchial epithelial cells as indicated (hours post-infection, hpi). a, Maximum intensity projections of nuclei stained by DAPI over a time-course of virus infection spanning 0-34 hpi. b, Nucleus size corresponding to (a). The total number of nuclei analyzed were 187 (Uninfected or 22 hpi), 179 (16 hpi), 157 (28 hpi), or 143 (34 hpi). c, Visualization of nuclear reorganization by immunostaining of laminA. Line profile corresponding to dashed yellow line is shown. d, Visualization of nuclear reorganization by immunostaining of histone H1. Line profile corresponding to dashed yellow line is shown. e, Changes in nucleus and viral replication compartment morphology over a time-course of virus infection (16-28 hpi) corresponding to Fig. 4a, shown by DAPI staining and immunostaining of DBP. f, Localization of 52K at 34 hpi. DNA is stained with DAPI. Examples of the late virion accumulation compartments identified by DAPI staining and the absence of 52K staining are indicated (yellow arrows). Zoom shows magnified 35 x 35 Î¼m area corresponding to dotted white box. g, Live imaging of 52K-GFP in WT adenovirus infected transgenic A549 lung cells showing the progression of 52K-localization - from nuclear bodies to peripheral. Subsequent panels represent 15-minute intervals. h, Purified dsDNA corresponding to the 36 kbp AdV genome (vDNA). Digestion of DNA by Benzonase is included for quality control. i, Confocal images of in vitro phase-separation assays using 10 Î¼M 488-labelled 52K (green) and indicated concentrations of vDNA (0-3200 pM). j, Number of condensates detected by analyzing a total of nine fields of view (three full repeats comprising three technical repeats each). k, Condensate size corresponding to (i). Median (line), interquartile interval (box), and 5-95 percentiles (whiskers) are shown. The total number of condensates analyzed were 3164 (0 pM), 9688 (200 pM), 16207 (400 pM), 14839 (800 pM), 800 (1600 (pM), or 330 (3200 pM). l, In vitro phase-separation of 52K at a concentration of 10 Î¼M without (âˆ’ vDNA), or with untreated (âˆ’ Benzonase) or benzonase treated (+ Benzonase) viral DNA (+ vDNA) at a concentration of 800 pM. All image scale bars = 10 Âµm. Three independent repeats pooled (b,k) or plotted (j), with mean (columns or line) and standard deviation (error bars) shown (b,j). Kruskal-Wallis with Dunnâ€™s tests (b,k) or one-way ANOVA with Å ÃdÃ¡kâ€™s tests (j). ns pâ€‰>â€‰0.05, ** pâ€‰<â€‰0.01, **** pâ€‰<â€‰0.0001. Additional statistics including exact P values are included inÂ Supplementary Notes. Gel source data are included in Supplementary Fig. 1.
Source Data


Extended Data Fig. 8 Additional characterization of the temperature-sensitive mutant adenovirus.
a, SDS-PAGE of viral particles purified from WT, Î”52K, or temperature sensitive (TS) adenovirus infected 293 cells incubated at 39.5â€‰Â°C. Packaged (P) and incomplete (I) particles are indicated. Hexon, penton, and fiber were detected by Coomassie staining. IIIa, 52K, and the unprocessed (pre-VII) and processed (VII) forms of protein VII were detected by immunoblot blot. b, Localization of 52K and viral replication compartments (DBP) in human bronchial epithelial cells infected with WT or temperature sensitive (TS) adenovirus and incubated at the non-permissive temperature of 39.5â€‰Â°C. c, Wide view images of 52K localization in human bronchial epithelial cells infected with WT or temperature sensitive (TS) adenovirus and incubated at the non-permissive temperature of 39.5â€‰Â°C. d, Localization of WT or temperature sensitive (TS) 52K-GFP transient expressed in 293T cells incubated at the non-permissive temperature of 39.5â€‰Â°C. DNA is stained with DAPI. e, Western blots showing accumulation of viral late proteins in human bronchial epithelial cells infected with WT or temperature sensitive (TS) adenovirus and incubated at the permissive temperature of 32.0â€‰Â°C. GAPDH is included as a sample processing control. f, Localization of 52K or IIIa human bronchial epithelial cells infected with WT or temperature sensitive (TS) adenovirus and incubated at the permissive temperature of 32.0â€‰Â°C. Viral replication compartments marked by immunostaining of the viral DNA-binding protein (DBP) are shown. All image scale bars = 10 Î¼m, outlines of nuclei (dotted white lines) are shown (b,c,f). Gel source data including additional loading controls are included in Supplementary Fig. 1.


Extended Data Fig. 9 Supporting data corresponding to complementation of the Î”52K mutant adenovirus.
a,b, Transient expression of WT or mutant (Q/G, P/A, R/K, Scramble) in 293T cells infected with Î”52K adenovirus. Cells that express no transgene act as a negative control. a, Immunoprecipitation of WT or mutant 52K. Input (1%) is shown. b, Complementation of progeny production. Progeny production in WT virus infected cells without trans gene expression is shown for context. c,d, transgenic A549 lung cells expressing R/K or matched WT 52K control (Set 1) or P/A and matched WT 52K control (Set 2). c, Localization of 52K. d, % of cells with nuclear bodies. e, SDS-PAGE and Coomassie staining of protein showing cleavage of the MBP tag from 52K mutant Î”1-119 by addition of TEV protease at a ratio of 1:50 and incubation at 25â€‰Â°C for 1 h. f, In vitro phase-separation of 52K mutant Î”1-119 at the indicated protein concentrations. gâ€“j, Parental A549 lung cells or transgenic A549 lung cells expressing WT 52K or Î”1-47, uninfected (Un) or infected with WT or Î”52K adenovirus as indicated. g, Accumulation of viral late proteins with GAPDH as loading control. h, Localization of WT 52K or Î”1-47 in relation to viral replication compartments (DBP). i, Complementation of progeny production in Î”52K infected cells. Progeny production in WT adenovirus infected parental control cells is included for context. j, Incomplete or packaged particles isolated by CsCl gradient purification. All image scale bars = 10 Î¼m, outlines of nuclei (dotted white lines) are shown (c,h). Three independent repeats plotted (b,d,i), with mean (columns) and standard deviation (error bars) shown. ANOVA with Dunnettâ€™s (b), Å ÃdÃ¡kâ€™s (d), or Tukeyâ€™s tests (i). ns pâ€‰>â€‰0.05, * pâ€‰<â€‰0.05, ** pâ€‰<â€‰0.01, *** pâ€‰<â€‰0.001, **** pâ€‰<â€‰0.0001. Additional statistics including exact P values are included inÂ Supplementary Notes. Gel source data including additional loading controls are included in Supplementary Fig. 1.
Source Data


Extended Data Fig. 10 Proposed model of adenovirus assembly.
The 52K protein and capsid proteins phase-separate, concentrating these proteins within biomolecular condensates, while limiting their concentration in the nucleoplasm. Incomplete, empty capsids assemble from viral proteins in the nucleoplasm. The organization of viral proteins into biomolecular condensates is a pre-requisite for assembly of complete packaged particles, which is mediated by the provision of viral genomes and their associated core and packaging proteins. Top panel: Mutation of arginine to lysine (R/K) within the intrinsically disordered region of 52K protein prevents phase-separation. Mutation of proline to alanine (P/A) in the intrinsically disordered spacer region compromises coordinated assembly downstream of biomolecular condensates. In either case this results in the assembly of only incomplete particles. Bottom panel: Biomolecular condensates formed during infection with ts369 at the non-permissive temperature of 39.5â€‰Â°C do not concentrate IIIa, a key determinant of successful packaging. This results in failed packaging, and assembly of only incomplete particles.





Supplementary information
Supplementary Figure 1
Gel source data including uncropped images of western blots and Coomassie stained gels, and additional gel loading and sample processing controls not shown in Figures or Extended Data.
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Additional notes and information on sample size and statistics, including test statistics, confidence intervals, effect sizes, degrees of freedom and exact P values.


Supplementary Video 1
Fusion of Viral Nuclear Bodies. Live cell imaging showing the fusion of viral nuclear bodies in cells infected with WT adenovirus. Viral biomolecular condensates are visualized by the recruitment of 52K-GFP expressed in trans. Live cell imaging was captured at a frame rate of 1 frame per second and is presented as a video with a frame rate of 10 frames per second, representing a 5-minute imaging period. The video is displayed using the Fire lookup table from FIJI to highlight sub-compartments enriched for 52K-GFP.


Supplementary Video 2
Progression of 52K Localization Phenotype. Live cell imaging showing the progression of 52K localization phenotype from punctate nuclear bodies to peripheral accumulates in cells infected with WT adenovirus. Viral biomolecular condensates are visualized by the recruitment of 52K-GFP expressed in trans. Live cell imaging was captured at a frame rate of 20 frames per hour and is presented as a video with a frame rate of 4 frames per second, representing a 3-hour imaging period.
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