Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Partitioning of diluted anyons reveals their braiding statistics

Abstract

Correlations of partitioned particles carry essential information about their quantumness1. Partitioning full beams of charged particles leads to current fluctuations, with their autocorrelation (namely, shot noise) revealing the particles’ charge2,3. This is not the case when a highly diluted beam is partitioned. Bosons or fermions will exhibit particle antibunching (owing to their sparsity and discreteness)4,5,6. However, when diluted anyons, such as quasiparticles in fractional quantum Hall states, are partitioned in a narrow constriction, their autocorrelation reveals an essential aspect of their quantum exchange statistics: their braiding phase7. Here we describe detailed measurements of weakly partitioned, highly diluted, one-dimension-like edge modes of the one-third filling fractional quantum Hall state. The measured autocorrelation agrees with our theory of braiding anyons in the time domain (instead of braiding in space); with a braiding phase of 2θ = 2π/3, without any fitting parameters. Our work offers a relatively straightforward and simple method to observe the braiding statistics of exotic anyonic states, such as non-abelian states8, without resorting to complex interference experiments9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Partitioning diluted anyons in a two-QPC geometry.
Fig. 2: Trivial and braiding partitioning processes in QPC2.
Fig. 3: Excess autocorrelation noise as measured at amplifier B.
Fig. 4: The dependence of the autocorrelation (amplifier B) on beam dilution (RQPC1) and on RQPC2.
Fig. 5: Two-QPC configuration with an inter-QPC distance of 20 μm.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data related to this paper are available from the corresponding authors upon reasonable request.

References

  1. Hanbury Brown, R. & Twiss, R. Q. A test of a new type of stellar interferometer on Sirius. Nature 178, 1046 (1956).

    Article  ADS  Google Scholar 

  2. de-Picciotto, R. et al. Direct observation of a fractional charge. Nature 389, 162 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Saminadayar, L. et al. Observation of the e/3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett. 79, 2526 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Kimble, H. J., Dagenais, M. & Mandel, L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691 (1977).

    Article  ADS  CAS  Google Scholar 

  5. Henny, M. et al. The fermionic Hanbury Brown and Twiss experiment. Science 284, 296 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Oliver, W. D. et al. Hanbury Brown and Twiss-type experiment with electrons. Science 284, 299 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Lee, B., Han, C. & Sim, H.-S. Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008).

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  9. Lee, J.-Y. M. & Sim, H.-S. Non-abelian anyon collider. Nat. Commun. 13, 6660 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Leinaas, J. M. & Myrheim, J. On the theory of identical particles. Nuovo Cimento B 37, 1 (1977).

    Article  ADS  Google Scholar 

  11. Arovas, D., Schrieffer, J. R. & Wilczek, F. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722–723 (1984).

    Article  ADS  Google Scholar 

  12. Nakamura, J. et al. Direct observation of anyonc braiding statistics. Nat. Phys. 16, 931 (2020).

    Article  CAS  Google Scholar 

  13. de C. Chamon, C., Freed, D. E., Kivelson, S. A., Sondhi, S. L. & Wen, X. G. Two point-contact interferometer for quantum Hall systems. Phys. Rev. B 55, 2331–2343 (1997).

    Article  ADS  Google Scholar 

  14. Kundu, H.K., Biswas, S., Ofek, N. et al. Anyonic interference and braiding phase in a Mach-Zehnder interferometer. Nat. Phys. 19, 515–521 (2023).

  15. Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 6487 (2020).

    Article  MathSciNet  Google Scholar 

  16. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Liu, R. et al. Quantum interference in electron collision. Nature 391, 263 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Bocquillon, E. et al. Coherence and indistinguishability of single electrons emitted by independent sources. Science 339, 1054 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Rosenow, B., Levkivskyi, I. P. & Halperin, B. I. Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016).

    Article  ADS  PubMed  Google Scholar 

  20. Chung, Y. C. et al. Anomalous chiral Luttinger liquid behavior of diluted fractionally charged quasiparticles. Phys. Rev. B 67, 201104(R) (2003).

    Article  ADS  Google Scholar 

  21. Heiblum, M. Fractional Charge Determination via Quantum Shot Noise Measurements, in Perspectives of Mesoscopic Physics: Dedicated to Yoseph Imry’s 70th Birthday (eds Ahrony, A. & Entin-Wohlman, O.) 115–136 (World Scientific, 2010).

  22. Feldman, D. E. & Heiblum, M. Why a noninteracting model works for shot noise in fractional charge experiments. Phys. Rev. B 95, 115308 (2017).

    Article  ADS  Google Scholar 

  23. Trauzettel, B., Roche, P., Glattli, D. C. & Saleur, H. Effect of interactions on the noise of chiral Luttinger liquid systems. Phys. Rev. B 70, 233301 (2004).

    Article  ADS  Google Scholar 

  24. Rosenow, B. & Halperin, B. I. Nonuniversal behavior of scattering between fractional quantum Hall edges. Phys. Rev. Lett. 88, 096404 (2002).

    Article  ADS  PubMed  Google Scholar 

  25. Blanter, Y. M. & Büttiker, M. Shot noise in mesoscopic conductors. Phys. Rep. 336, 1–116 (2000).

    Article  ADS  CAS  Google Scholar 

  26. Glidic, P. et al. Cross-correlation investigation of anyon statistics in the ν = 1/3 and 2/5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023).

  27. Ruelle, M. et al. Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023).

  28. Glattli, D. C. Tunneling Experiments in the Fractional Quantum Hall Effect Regime in The Quantum Hall Effect Progress in Mathematical Physics Vol 45 (eds Douçot, B. et al.) 163–197 (Birkhäuser, 2005).

  29. Han, C., Park, J., Gefen, Y. & Sim, H.-S. Topological vacuum bubbles by anyon braiding. Nat. Commun. 7, 11131 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, J.-Y. M., Han, C. & Sim, H.-S. Fractional mutual statistics on integer quantum Hall edges. Phys. Rev. Lett. 125, 196802 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Morel, T., Lee, J.-Y. M., Sim, H.-S. & Mora, C. Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022).

    Article  ADS  CAS  Google Scholar 

  32. Jonckheere, T., Rech, J., Grémaud, B. & Martin, T. Anyonic statistics revealed by the Hong–Ou–Mandel dip for fractional excitations. Preprint at https://arxiv.org/abs/2207.07172 (2022).

  33. Safi, I., Devillard, P. & Martin, T. Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.-Y.M.L. acknowledges support from Korea NRF, NRF-2019-Global PhD fellowship. H.-S.S. acknowledges support from Korea NRF, the SRC Center for Quantum Coherence in Condensed Matter (grant number 2016R1A5A1008184 and RS-2023-00207732). N.S. acknowledges discussions with Y. Shapira and A. Stern, and acknowledges the Clore Scholars Programme. Y.O. acknowledges the partially supported by grants from the ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreements LEGOTOP No. 788715 and HQMAT No. 817799), the DFG (CRC/Transregio 183, EI 519/7-1), the BSF and NSF (2018643), and the ISF Quantum Science and Technology (2074/19). M.H. acknowledges the continuous support of the Sub-Micron Center staff, the support of the European Research Council under the European Community’s Seventh Framework Program (FP7/2007-2013)/ERC under grant agreement number 713351. We thank G. Fève, F. Pierre and C. Mora for discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.-Y.M.L. and H.-S.S. developed the theory and analysed the data. C.H. and T.A. fabricated the structures, did all measurements and analysed the data. N.S. and Y.O. added perspective on the theory. V.U. designed and grew the heterostructures by Molecular Beam Epitaxy. M.H. supervised the experiments.

Corresponding authors

Correspondence to Moty Heiblum or H.-S. Sim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Information, including Supplementary Notes I–VI, Figs. 1–13 and Refs. 1–13.

Supplementary Video 1

Time-domain interference. This video illustrates the time-domain braiding process in our experiment.

Peer Review File

Supplementary Data

Source data for Supplementary Figs. 2–4 and 11–13.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JY.M., Hong, C., Alkalay, T. et al. Partitioning of diluted anyons reveals their braiding statistics. Nature 617, 277–281 (2023). https://doi.org/10.1038/s41586-023-05883-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-05883-2

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing