Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantioselective transition-metal catalysis via an anion-binding approach

Abstract

Asymmetric transition-metal catalysis represents a powerful strategy for accessing enantiomerically enriched molecules1,2,3. The classical strategy for inducing enantioselectivity with transition-metal catalysts relies on direct complexation of chiral ligands to produce a sterically constrained reactive metal site that allows formation of the major product enantiomer while effectively inhibiting the pathway to the minor enantiomer through steric repulsion4. The chiral-ligand strategy has proven applicable to a wide variety of highly enantioselective transition-metal-catalysed reactions, but important scenarios exist that impose limits to its successful adaptation. Here, we report a new approach for inducing enantioselectivity in transition-metal-catalysed reactions that relies on neutral hydrogen-bond donors (HBDs)5,6 that bind anions of cationic transition-metal complexes to achieve enantiocontrol and rate enhancement through ion pairing together with other non-covalent interactions7,8,9. A cooperative anion-binding effect of a chiral bis-thiourea HBD is demonstrated to lead to high enantioselectivity (up to 99% enantiomeric excess) in intramolecular ruthenium-catalysed propargylic substitution reactions10. Experimental and computational mechanistic studies show the attractive interactions between electron-deficient arene components of the HBD and the metal complex that underlie enantioinduction and the acceleration effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies in asymmetric transition-metal catalysis.
Fig. 2: Reaction optimization and representative products of the stereoselective propargylic substitution reaction.
Fig. 3: Study of the mode of interaction between HBDs and diruthenium complexes in the stereoselective propargylic substitution.
Fig. 4: Study of non-covalent interactions responsible for enantioselectivity and rate acceleration.

Similar content being viewed by others

Data availability

The data that support the findings in this work are available within the paper and Supplementary Information.

References

  1. Noyori, R. Asymmetric catalysis: science and opportunities (Nobel Lecture). Angew. Chem. Int. Edn 41, 2008–2022 (2002).

  2. Sharpless, K. B. Searching for new reactivity (Nobel Lecture). Angew. Chem. Int. Edn 41, 2024–2032 (2002).

  3. Knowles, W. S. Asymmetric hydrogenations (Nobel Lecture 2001). Adv. Synth. Catal. 345, 3–13 (2003).

    Article  CAS  Google Scholar 

  4. Pfaltz, A. & Drury, W. J. Design of chiral ligands for asymmetric catalysis: from C2-symmetric P,P- and N,N-ligands to sterically and electronically nonsymmetrical P,N-ligands. Proc. Natl Acad. Sci. USA 101, 5723–5726 (2004).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. Nishikawa, Y. Recent topics in dual hydrogen bonding catalysis. Tetrahedron Lett. 59, 216–223 (2018).

    Article  CAS  Google Scholar 

  6. Doyle, A. G. & Jacobsen, E. N. Small-molecule H-bond donors in asymmetric catalysis. Chem. Rev. 107, 5713–5743 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Brak, K. & Jacobsen, E. N. Asymmetric ion-pairing catalysis. Angew. Chem. Int. Edn 52, 534–561 (2013).

  8. García-Mancheño, O. Anion-Binding Catalysis (John Wiley & Sons, 2022).

  9. Knowles, R. R. & Jacobsen, E. N. Attractive noncovalent interactions in asymmetric catalysis: links between enzymes and small molecule catalysts. Proc. Natl Acad. Sci. USA 107, 20678–20685 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. Nishibayashi, Y., Inada, Y., Hidai, M. & Uemura, S. Ruthenium-catalyzed carbon–carbon bond formation between propargylic alcohols and alkenes via the allenylidene-ene reaction. J. Am. Chem. Soc. 125, 6060–6061 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Ranieri, B., Escofet, I. & Echavarren, A. M. Anatomy of gold catalysts: facts and myths. Org. Biomol. Chem. 13, 7103–7118 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Michaelson, R. C., Palermo, R. E. & Sharpless, K. B. Chiral hydroxamic acids as ligands in the vanadium catalyzed asymmetric epoxidation of allylic alcohols by tert-butyl hydroperoxide. J. Am. Chem. Soc. 99, 1990–1992 (1977).

    Article  CAS  Google Scholar 

  13. Yoshino, T., Satake, S. & Matsunaga, S. Diverse approaches for enantioselective C−H functionalization reactions using group 9 CpXMIII catalysts. Chem. Eur. J. 26, 7346–7357 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Phipps, R. J., Hamilton, G. L. & Toste, F. D. The progression of chiral anions from concepts to applications in asymmetric catalysis. Nat. Chem. 4, 603–614 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Mahlau, M. & List, B. Asymmetric counteranion-directed catalysis: concept, definition, and applications. Angew. Chem. Int. Edn 52, 518–533 (2013).

  16. Hamilton, G. L., Kang, E. J., Mba, M. & Toste, F. D. A powerful chiral counterion strategy for asymmetric transition metal catalysis. Science 317, 496–499 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Mukherjee, S. & List, B. Chiral counteranions in asymmetric transition-metal catalysis:  highly enantioselective Pd/Brønsted acid-catalyzed direct α-allylation of aldehydes. J. Am. Chem. Soc. 129, 11336–11337 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Satake, S. et al. Pentamethylcyclopentadienyl rhodium(III)–chiral disulfonate hybrid catalysis for enantioselective C–H bond functionalization. Nat. Catal. 1, 585–591 (2018).

    Article  CAS  Google Scholar 

  19. Raducan, M., Moreno, M., Bour, C. & Echavarren, A. M. Phosphate ligands in the gold(I)-catalysed activation of enynes. Chem. Commun. 48, 52–54 (2012).

    Article  CAS  Google Scholar 

  20. Kündig, E. P., Saudan, C. M. & Bernardinelli, G. A stable and recoverable chiral Ru Lewis acid: synthesis, asymmetric Diels–Alder catalysis and structure of the Lewis acid methacrolein complex. Angew. Chem. Int. Edn 38, 1219–1223 (1999).

  21. Alvarez, S. Coordinating ability of anions, solvents, amino acids, and gases towards alkaline and alkaline-earth elements, transition metals, and lanthanides. Chem. Eur. J. 26, 4350–4377 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Nguyen, B. N. et al. Deconvolution of the mechanism of homogeneous gold-catalyzed reactions. Organometallics 31, 2395–2402 (2012).

    Article  CAS  Google Scholar 

  23. Jindal, G. & Sunoj, R. B. Mechanistic insights on cooperative asymmetric multicatalysis using chiral counterions. J. Org. Chem. 79, 7600–7606 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Biasiolo, L. et al. Unexpected anion effect in the alkoxylation of alkynes catalyzed by N-heterocyclic carbene (NHC) cationic gold complexes. Chem. Eur. J. 20, 14594–14598 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Klausen, R. S. & Jacobsen, E. N. Weak Brønsted acid–thiourea co-catalysis: enantioselective, catalytic protio-Pictet–Spengler reactions. Org. Lett. 11, 887–890 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu, H., Zuend, S. J., Woll, M. G., Tao, Y. & Jacobsen, E. N. Asymmetric cooperative catalysis of strong Brønsted acid-promoted reactions using chiral ureas. Science 327, 986–990 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Banik, S. M., Levina, A., Hyde, A. M. & Jacobsen, E. N. Lewis acid enhancement by hydrogen-bond donors for asymmetric catalysis. Science 358, 761–764 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Trotta, A. H. & Jacobsen, E. N. in Anion-Binding Catalysis (ed. García-Mancheño, O.) 141–159 (John Wiley & Sons, 2022).

  29. Mo, J. & Xiao, J. The Heck reaction of electron-rich olefins with regiocontrol by hydrogen-bond donors. Angew. Chem. Int. Edn 45, 4152–4157 (2006).

  30. Ruan, J., Iggo, J. A., Berry, N. G. & Xiao, J. Hydrogen-bonding-promoted oxidative addition and regioselective arylation of olefins with aryl chlorides. J. Am. Chem. Soc. 132, 16689–16699 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Farney, E. P. et al. Discovery and elucidation of counteranion dependence in photoredox catalysis. J. Am. Chem. Soc. 141, 6385–6391 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Franchino, A., Martí, À., Nejrotti, S. & Echavarren, A. M. Silver-free Au(I) catalysis enabled by bifunctional urea- and squaramide-phosphine ligands via H-bonding. Chem. Eur. J. 27, 11989–11996 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Franchino, A., Martí, À. & Echavarren, A. M. H-bonded counterion-directed enantioselective Au(I) catalysis. J. Am. Chem. Soc. 144, 3497–3509 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, X. et al. Asymmetric azide–alkyne cycloaddition with Ir(I)/squaramide cooperative catalysis: atroposelective synthesis of axially chiral aryltriazoles. J. Am. Chem. Soc. 144, 6200–6207 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Hu, Q., He, Z., Peng, L. & Guo, C. Combining nickel and squaramide catalysis for the stereodivergent α-propargylation of oxindoles. Nat. Synth. 1, 322–331 (2022).

    Article  ADS  Google Scholar 

  36. Li, M.-L., Yu, J.-H., Li, Y.-H., Zhu, S.-F. & Zhou, Q.-L. Highly enantioselective carbene insertion into N–H bonds of aliphatic amines. Science 366, 990–994 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Furniel, L. G., Echemendía, R. & Burtoloso, A. C. B. Cooperative copper-squaramide catalysis for the enantioselective N–H insertion reaction with sulfoxonium ylides. Chem. Sci. 12, 7453–7459 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Simlandy, A. K., Ghosh, B. & Mukherjee, S. Enantioselective [4 + 2]-annulation of azlactones with copper-allenylidenes under cooperative catalysis: synthesis of α-quaternary α-acylaminoamides. Org. Lett. 21, 3361–3366 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Guan, Y., Attard, J. W., Visco, M. D., Fisher, T. J. & Mattson, A. E. Enantioselective catalyst systems from copper(II) triflate and BINOL–silanediol. Chem. Eur. J. 24, 7123–7127 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Nishibayashi, Y., Wakiji, I. & Hidai, M. Novel propargylic substitution reactions catalyzed by thiolate-bridged diruthenium complexes via allenylidene intermediates. J. Am. Chem. Soc. 122, 11019–11020 (2000).

    Article  CAS  Google Scholar 

  41. Miyake, Y., Uemura, S. & Nishibayashi, Y. Catalytic propargylic substitution reactions. Chem. Cat. Chem. 1, 342–356 (2009).

    CAS  Google Scholar 

  42. Nishibayashi, Y. et al. Ruthenium-catalyzed propargylic substitution reactions of propargylic alcohols with oxygen-, nitrogen-, and phosphorus-centered nucleophiles. Chem. Eur. J. 11, 1433–1451 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Nishibayashi, Y., Yoshikawa, M., Inada, Y., Hidai, M. & Uemura, S. Ruthenium-catalyzed propargylation of aromatic compounds with propargylic alcohols. J. Am. Chem. Soc. 124, 11846–11847 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Fukamizu, K., Miyake, Y. & Nishibayashi, Y. Ruthenium-catalyzed enantioselective carbon−carbon bond forming reaction via allenylidene-ene process: synthetic approach to chiral heterocycles such as chromane, thiochromane, and 1,2,3,4-tetrahydroquinoline derivatives. J. Am. Chem. Soc. 130, 10498–10499 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Reisman, S. E., Doyle, A. G. & Jacobsen, E. N. Enantioselective thiourea-catalyzed additions to oxocarbenium ions. J. Am. Chem. Soc. 130, 7198–7199 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lehnherr, D., Ford, D. D., Bendelsmith, A. J., Kennedy, C. R. & Jacobsen, E. N. Conformational control of chiral amido-thiourea catalysts enables improved activity and enantioselectivity. Org. Lett. 18, 3214–3217 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kennedy, C. R. et al. Mechanism-guided development of a highly active bis-thiourea catalyst for anion-abstraction catalysis. J. Am. Chem. Soc. 138, 13525–13528 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Park, Y. et al. Macrocyclic bis-thioureas catalyze stereospecific glycosylation reactions. Science 355, 162–166 (2017).

  49. Levi, S. M., Li, Q., Rötheli, A. R. & Jacobsen, E. N. Catalytic activation of glycosyl phosphates for stereoselective coupling reactions. Proc. Natl Acad. Sci. USA 116, 35–39 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Mayfield, A. B., Metternich, J. B., Trotta, A. H. & Jacobsen, E. N. Stereospecific furanosylations catalyzed by bis-thiourea hydrogen-bond donors. J. Am. Chem. Soc. 142, 4061–4069 (2020).

  51. Li, Q., Levi, S. M., Wagen, C. C., Wendlandt, A. E. & Jacobsen, E. N. Site-selective, stereocontrolled glycosylation of minimally protected sugars. Nature 608, 74–79 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  52. Knowles, R. R., Lin, S. & Jacobsen, E. N. Enantioselective thiourea-catalyzed cationic polycyclizations. J. Am. Chem. Soc. 132, 5030–5032 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ronchi, E., Paradine, S. M. & Jacobsen, E. N. Enantioselective, catalytic multicomponent synthesis of homoallylic amines enabled by hydrogen-bonding and dispersive interactions. J. Am. Chem. Soc. 143, 7272–7278 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Taylor, M. S., Tokunaga, N. & Jacobsen, E. N. Enantioselective thiourea-catalyzed acyl-Mannich reactions of isoquinolines. Angew. Chem. Int. Edn 44, 6700–6704 (2005).

  55. Raheem, I. T., Thiara, P. S., Peterson, E. A. & Jacobsen, E. N. Enantioselective Pictet–Spengler-type cyclizations of hydroxylactams:  H-bond donor catalysis by anion binding. J. Am. Chem. Soc. 129, 13404–13405 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Liao, S. & List, B. Asymmetric counteranion-directed transition-metal catalysis: enantioselective epoxidation of alkenes with manganese(III) salen phosphate complexes. Angew. Chem. Int. Edn 49, 628–631 (2010).

  57. Myers, B. J. Common Solvents Used in Organic Chemistry: Table of Properties https://organicchemistrydata.org/solvents/ (2005).

Download references

Acknowledgements

This work was supported by the National Institutes of Health through grant no. GM43214, NSF predoctoral fellowship (DGE1745303) and Bristol-Myers Squibb Graduate Research fellowship to J.M.O., and Alfred Bader Fellowship in Chemistry to P.V. We thank S.-L. Zheng (Harvard University) for determination of the X-ray crystal structures, Q. Li for assistance with catalyst synthesis, and D. Diaz, J. Gair, C. Wagen and J. Wong for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

E.N.J. conceived the work, P.V. and J.M.O. designed and conducted the experiments, E.N.J. supervised and directed the research, and all authors wrote the manuscript.

Corresponding author

Correspondence to Eric N. Jacobsen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Anita Mattson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovian, J.M., Vojáčková, P. & Jacobsen, E.N. Enantioselective transition-metal catalysis via an anion-binding approach. Nature 616, 84–89 (2023). https://doi.org/10.1038/s41586-023-05804-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-05804-3

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing