Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extensive global wetland loss over the past three centuries

Abstract

Wetlands have long been drained for human use, thereby strongly affecting greenhouse gas fluxes, flood control, nutrient cycling and biodiversity1,2. Nevertheless, the global extent of natural wetland loss remains remarkably uncertain3. Here, we reconstruct the spatial distribution and timing of wetland loss through conversion to seven human land uses between 1700 and 2020, by combining national and subnational records of drainage and conversion with land-use maps and simulated wetland extents. We estimate that 3.4 million km2 (confidence interval 2.9–3.8) of inland wetlands have been lost since 1700, primarily for conversion to croplands. This net loss of 21% (confidence interval 16–23%) of global wetland area is lower than that suggested previously by extrapolations of data disproportionately from high-loss regions. Wetland loss has been concentrated in Europe, the United States and China, and rapidly expanded during the mid-twentieth century. Our reconstruction elucidates the timing and land-use drivers of global wetland losses, providing an improved historical baseline to guide assessment of wetland loss impact on Earth system processes, conservation planning to protect remaining wetlands and prioritization of sites for wetland restoration4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reconstructed extent of drained, lost or converted wetlands between 1700 and 2020 globally.
Fig. 2: Heterogeneous wetland loss across countries, peatland regions and river basins of the world.
Fig. 3: Regional estimates of wetland loss to calibrate our reconstruction.
Fig. 4: Global wetland loss estimates from the literature and our study diverge markedly, with our reconstructed losses being lower than most previous estimates.

Similar content being viewed by others

Data availability

Data for national and subnational statistics of drained or converted areas, regional wetland percentage loss estimates, and gridded reconstruction of drained area per land use and cumulative—as well as natural wetland area—are available at https://doi.org/10.5281/zenodo.7293597.

Code availability

The scripts used to process input data, model and calibrate the wetland loss reconstruction, and produce the figures are publicly available at https://github.com/etiennefluetchouinard/wetland-loss-reconstruction.

References

  1. Zedler, J. B. & Kercher, S. Wetland resources: status, trends, ecosystem services, and restorability. Annu. Rev. Environ. Resour. 30, 39–74 (2005).

    Article  Google Scholar 

  2. Finlayson, C. M. et al. Millennium Ecosystem Assessment: Ecosystems and Human Well-being: Wetlands and Water Synthesis (World Resources Institute, 2005).

  3. Davidson, N. C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshwater Res. 65, 934 (2014).

    Article  Google Scholar 

  4. Günther, A. et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. 11, 1644 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. Schultz, B., Thatte, C. D. & Labhsetwar, V. K. Irrigation and drainage. Main contributors to global food production. Irrig. Drain. 54, 263–278 (2005).

    Article  Google Scholar 

  6. Valipour, M. et al. The evolution of agricultural drainage from the earliest times to the present. Sustainability 12, 416 (2020).

    Article  Google Scholar 

  7. Holden, J., Chapman, P. J. & Labadz, J. C. Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Prog. Phys. Geogr. 28, 95–123 (2004).

    Article  Google Scholar 

  8. Joosten, H. & Clarke, D. Wise Use of Mires and Peatlands (International Mire Conservation Group and International Peat Society, 2002).

  9. van Asselen, S., Verburg, P. H., Vermaat, J. E. & Janse, J. H. Drivers of wetland conversion: a global meta-analysis. PLoS ONE 8, e81292 (2013).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Maron, M. et al. The many meanings of no net loss in environmental policy. Nat. Sustain. 1, 19–27 (2018).

    Article  Google Scholar 

  11. Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Page, S. E. & Hooijer, A. In the line of fire: the peatlands of Southeast Asia. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150176 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Miettinen, J., Shi, C. & Liew, S. C. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob. Ecol. Conserv. 6, 67–78 (2016).

    Article  Google Scholar 

  14. Wada, Y. et al. Recent changes in land water storage and its contribution to sea level variations. Surv. Geophys. 38, 131–152 (2017).

    Article  ADS  PubMed  Google Scholar 

  15. Xu, J., Morris, P. J., Liu, J. & Holden, J. Hotspots of peatland-derived potable water use identified by global analysis. Nat. Sustain. 1, 246–253 (2018).

    Article  CAS  Google Scholar 

  16. Sterling, S. M., Ducharne, A. & Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Change 3, 385–390 (2013).

    Article  ADS  CAS  Google Scholar 

  17. Abril, G. & Borges, A. V. Ideas and perspectives: carbon leaks from flooded land: do we need to replumb the inland water active pipe? Biogeosciences 16, 769–784 (2019).

    Article  Google Scholar 

  18. Qiu, C. et al. Large historical carbon emissions from cultivated northern peatlands. Sci. Adv. 7, eabf1332 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bahram, M. et al. Structure and function of the soil microbiome underlying N2O emissions from global wetlands. Nat. Commun. 13, 1430 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Paudel, R., Mahowald, N. M., Hess, P. G. M., Meng, L. & Riley, W. J. Attribution of changes in global wetland methane emissions from pre-industrial to present using CLM4.5-BGC. Environ. Res. Lett. 11, 034020 (2016).

    Article  ADS  Google Scholar 

  21. Cheng, F. Y., Van Meter, K. J., Byrnes, D. K. & Basu, N. B. Maximizing US nitrate removal through wetland protection and restoration. Nature 588, 625–630 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Bullock, A. & Acreman, M. The role of wetlands in the hydrological cycle. Hydrol. Earth Syst. Sci. 7, 358–389 (2003).

    Article  ADS  Google Scholar 

  23. Castellano, M. J., Archontoulis, S. V., Helmers, M. J., Poffenbarger, H. J. & Six, J. Sustainable intensification of agricultural drainage. Nat. Sustain. 2, 914–921 (2019).

    Article  Google Scholar 

  24. IPCC. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands: Methodological Guidance on Lands with Wet and Drained Soils, and Constructed Wetlands for Wastewater Treatment (2013).

  25. Tubiello, F., Biancalani, R., Salvatore, M., Rossi, S. & Conchedda, G. A worldwide assessment of greenhouse gas emissions from drained organic soils. Sustainability 8, 371 (2016).

    Article  Google Scholar 

  26. Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pongratz, J. et al. Models meet data: challenges and opportunities in implementing land management in Earth system models. Glob. Chang. Biol. 24, 1470–1487 (2018).

    Article  ADS  PubMed  Google Scholar 

  28. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Land Degradation Assessment (2018).

  29. Ramsar Convention Secretariat, Ramsar Convention on Wetlands. Global Wetland Outlook: State of the World’s Wetlands and their Services to People (2018).

  30. Winkler, M. G. & DeWitt, C. B. Environmental impacts of peat mining in the United States: documentation for wetland conservation. Environ. Conserv. 12, 317–330 (1985).

    Article  Google Scholar 

  31. Darrah, S. E. et al. Improvements to the Wetland Extent Trends (WET) index as a tool for monitoring natural and human-made wetlands. Ecol. Indic. 99, 294–298 (2019).

    Article  Google Scholar 

  32. Hu, S., Niu, Z., Chen, Y., Li, L. & Zhang, H. Global wetlands: potential distribution, wetland loss, and status. Sci. Total Environ. 586, 319–327 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Verhoeven, J. T. A. & Setter, T. L. Agricultural use of wetlands: opportunities and limitations. Ann. Bot. 105, 155–163 (2010).

    Article  PubMed  Google Scholar 

  34. Pavelis, G. A. Farm Drainage in the United States: History, Status, and Prospects (Economic Research Service, 1987).

  35. Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1071 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rooney, R. C., Bayley, S. E. & Schindler, D. W. Oil sands mining and reclamation cause massive loss of peatland and stored carbon. Proc. Natl Acad. Sci. USA 109, 4933–4937 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Acreman, M. & Holden, J. How wetlands affect floods. Wetlands 33, 773–786 (2013).

    Article  Google Scholar 

  38. Creed, I. F. et al. Enhancing protection for vulnerable waters. Nat. Geosci. 10, 809–815 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cohen, M. J. et al. Do geographically isolated wetlands influence landscape functions? Proc. Natl Acad. Sci. USA 113, 1978–1986 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Borges, A. V. et al. Divergent biophysical controls of aquatic CO2 and CH4 in the World’s two largest rivers. Sci. Rep. 5, 15614 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Melton, J. R. et al. Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences 10, 753–788 (2013).

    Article  ADS  Google Scholar 

  42. Ritzema, H. P. Drain for gain: managing salinity in irrigated lands—a review. Agric. Water Manage. 176, 18–28 (2016).

    Article  Google Scholar 

  43. Gallant, A. The challenges of remote monitoring of wetlands. Remote Sens. 7, 10938–10950 (2015).

    Article  ADS  Google Scholar 

  44. de Zeeuw, J. W. Peat and the Dutch golden age. The historical meaning of energy-attainability. A. A. G. Bijdr. 21, 3–31 (1978).

    Google Scholar 

  45. Woodward, C., Shulmeister, J., Larsen, J., Jacobsen, G. E. & Zawadzki, A. The hydrological legacy of deforestation on global wetlands. Science 346, 844–847 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Feick, S., Siebert, S. & Döll, P. A Digital Global Map of Artificially Drained Agricultural Areas (Johann Wolfgang Goethe-Universität Frankfurt am Main, 2005); https://www.uni-frankfurt.de/45217762/FHP_04_Feick_et_al_2005.pdf.

  47. Irrigation and Drainage in the World – A Global Review Vols I–III (International Commission on Irrigation & Drainage, 1982).

  48. FAOSTAT (Food and Agriculture Organization of the United Nations, accessed 21 October 2021); https://www.fao.org/faostat/en/.

  49. McCorvie, M. R. & Lant, C. L. Drainage district formation and the loss of Midwestern wetlands, 1850–1930. Agric. Hist. 67, 13–39 (1993).

    Google Scholar 

  50. AQUASTAT (Food and Agriculture Organization of the United Nations, accessed 17 August 2018); https://www.fao.org/aquastat/en/.

  51. Kearns, K. C. Development of the Irish peat fuel industry. Am. J. Econ. Sociol. 37, 179–193 (1978).

    Article  Google Scholar 

  52. Schultz, B., Zimmer, D. & Vlotman, W. F. Drainage under increasing and changing requirements. Irrig. Drain. Syst. 56, S3–S22 (2007).

    Article  Google Scholar 

  53. Niu, Z. et al. Mapping wetland changes in China between 1978 and 2008. Chin. Sci. Bull. 57, 2813–2823 (2012).

    Article  Google Scholar 

  54. Dahl, T. E. Wetlands Losses in the United States 1780’s to 1980’s: Report to Congress (US Department of Energy, 1990).

  55. Zhang, Z., Fluet-Chouinard, E. & Jensen, K. Development of the global dataset of Wetland Area and Dynamics for Methane Modeling (WAD2M). Earth Syst. Sci. Data 13, 2001–2023 (2021).

  56. Prigent, C., Jimenez, C. & Bousquet, P. Satellite‐derived global surface water extent and dynamics over the last 25 years (GIEMS‐2). J. Geophys. Res. Atmos. 125, e2019JD030711 (2020).

  57. Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004).

    Article  ADS  Google Scholar 

  58. Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Carroll, M. L., Townshend, J. R., DiMiceli, C. M., Noojipady, P. & Sohlberg, R. A. A new global raster water mask at 250 m resolution. Int. J. Digit. Earth 2, 291–308 (2009).

    Article  ADS  Google Scholar 

  60. Portmann, F. T., Siebert, S. & Döll, P. MIRCA2000–global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Global Biogeochem. Cycles 24, March 2010 (2010).

  61. Hugelius, G. et al. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth Syst. Sci. Data 5, 3–13 (2013).

    Article  ADS  Google Scholar 

  62. Gumbricht, T. et al. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob. Chang. Biol. 23, 3581–3599 (2017).

    Article  ADS  PubMed  Google Scholar 

  63. Zhang, Z., Zimmermann, N. E., Kaplan, J. O. & Poulter, B. Modeling spatiotemporal dynamics of global wetlands: comprehensive evaluation of a new sub-grid TOPMODEL parameterization and uncertainties. Biogeosciences 13, 1387–1408 (2016).

    Article  ADS  Google Scholar 

  64. Beven, K. J. & Kirkby, M. J. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 24, 43–69 (1979).

    Article  Google Scholar 

  65. Wania, R. et al. Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP). Geosci. Model Dev. 6, 617–641 (2013).

    Article  ADS  Google Scholar 

  66. Goldewijk, K. K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene – HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).

    Article  ADS  Google Scholar 

  67. Goldewijk, K. K., Beusen, A., Van Drecht, G. & De Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Global Ecol. Biogeogr. 20, 73–86 (2011).

    Article  Google Scholar 

  68. Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).

    Article  ADS  CAS  Google Scholar 

  69. Xu, J., Morris, P. J., Liu, J. & Holden, J. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Catena 160, 134–140 (2018).

  70. Padfield, D. & Matheson, D. P. A. nls.multstart: Robust non-linear regression using AIC scores. R Project https://mran.microsoft.com/snapshot/2021-08-04/web/packages/nls.multstart/index.html (2020).

  71. Smedema, L. K., Abdel-Dayem, S. & Ochs, W. J. Drainage and agricultural development. Irrig. Drain. Syst. 14, 223–235 (2000).

    Article  Google Scholar 

  72. Murphy, F., Devlin, G. & McDonnell, K. Benchmarking environmental impacts of peat use for electricity generation in Ireland—a life cycle assessment. Sustain. Sci. Pract. Policy 7, 6376–6393 (2015).

    Google Scholar 

  73. Denham, T. Archaeological evidence for mid-Holocene agriculture in the interior of Papua New Guinea: a critical review. Archaeol. Oceania 38, 159–176 (2003).

    Article  Google Scholar 

  74. Fuller, D. Q. & Qin, L. Water management and labour in the origins and dispersal of Asian rice. World Archaeol. 41, 88–111 (2009).

    Article  Google Scholar 

  75. Bellwood, P. The checkered prehistory of rice movement southwards as a domesticated cereal—from the Yangzi to the Equator. Rice 4, 93–103 (2011).

    Article  Google Scholar 

  76. Vörösmarty, C. J. & Fekete, B. ISLSCP II river routing data (STN-30p). ORNL DAAC https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1005 (2011).

Download references

Acknowledgements

Funding for this work was provided by a postgraduate scholarship from the Natural Sciences and Engineering Research Council of Canada (no. PGSD2-471651-2015), the David and Lucille Packard Fellowship in Science and Engineering and National Science Foundation (grant no. DEB-1115025), a DAAD visit to Bonn Universität and by the Gordon and Betty Moore Foundation through grant no. GBMF5439 (Advancing Understanding of the Global Methane Cycle) to Stanford University supporting the Methane Budget activity for the Global Carbon Project. B.D.S. was funded by the Swiss National Science Foundation (grant no. PCEFP2_181115).

Author information

Authors and Affiliations

Authors

Contributions

E.F.-C. conceived and designed the study, with input from J.R.M., B.D.S., A.M., Z.Z., B.P., P.B.M. and R.B.J. E.F.-C., S.S. and T.M. compiled drainage data. Wetland area data were provided by Z.Z., B.D.S., J.R.M. and B.L. Land-use data were provided by K.K.G. E.F.-C. developed the model calibration, with advice from B.D.S., J.M. and Z.Z. E.F.-C. wrote the manuscript with input from P.B.M., and all authors edited the final version.

Corresponding author

Correspondence to Etienne Fluet-Chouinard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Steve Frolking, James Megonigal, Nicholas Murray and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary figs, tables and references.

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fluet-Chouinard, E., Stocker, B.D., Zhang, Z. et al. Extensive global wetland loss over the past three centuries. Nature 614, 281–286 (2023). https://doi.org/10.1038/s41586-022-05572-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05572-6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene