Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spin-polarized spatially indirect excitons in a topological insulator

Abstract

The exciton, a bound state of an electron and a hole, is a fundamental quasiparticle induced by coherent light–matter interactions in semiconductors. When the electrons and holes are in distinct spatial locations, spatially indirect excitons are formed with a much longer lifetime and a higher condensation temperature. One of the ultimate frontiers in this field is to create long-lived excitonic topological quasiparticles by driving exciton states with topological properties, to simultaneously leverage both topological effects and correlation1,2. Here we reveal the existence of a transient excitonic topological surface state (TSS) in a topological insulator, Bi2Te3. By using time-, spin- and angle-resolved photoemission spectroscopy, we directly follow the formation of a long-lived exciton state as revealed by an intensity buildup below the bulk-TSS mixing point and an anomalous band renormalization of the continuously connected TSS in the momentum space. Such a state inherits the spin-polarization of the TSS and is spatially indirect along the z axis, as it couples photoinduced surface electrons and bulk holes in the same momentum range, which ultimately leads to an excitonic state of the TSS. These results establish Bi2Te3 as a possible candidate for the excitonic condensation of TSSs3 and, in general, opens up a new paradigm for exploring the momentum space emergence of other spatially indirect excitons, such as moiré and quantum well excitons4,5,6, and for the study of non-equilibrium many-body topological physics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Excitons and topological states in Bi2Te3.
Fig. 2: Formation of excitons.
Fig. 3: Electron–hole dynamics.
Fig. 4: Spin character of the excitonic state.
Fig. 5: Excitonic topological state.

Similar content being viewed by others

Data availability

The data that support the finding of this study are available from the corresponding author upon request.

References

  1. Nuckolls, K. P. et al. Strongly correlated chern insulators in magic-angle twisted bilayer graphene. Nature 588, 610–615 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Flavour Hund’s coupling, Chern gaps and charge diffusivity in moiré graphene. Nature 592, 43–48 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Triola, C., Pertsova, A., Markiewicz, R. S. & Balatsky, A. V. Excitonic gap formation in pumped Dirac materials. Phys. Rev. B 95, 205410 (2017).

    Article  ADS  Google Scholar 

  4. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Butov, L. V., Lai, C. W., Ivanov, A. L., Gossard, A. C. & Chemla, D. S. Towards Bose-Einstein condensation of excitons in potential traps. Nature 417, 47–52 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  CAS  Google Scholar 

  8. Moore, J. E. The birth of topological insulators. Nature 464, 194–198 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    Article  ADS  Google Scholar 

  10. Moore, J. E. & Balents, L. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306 (2007).

    Article  ADS  Google Scholar 

  11. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article  ADS  PubMed  Google Scholar 

  12. Kung, H.-H. et al. Observation of chiral surface excitons in a topological insulator Bi2Se3. Proc. Natl Acad. Sci. USA 116, 4006 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cui, X. et al. Transient excitons at metal surfaces. Nat. Phys. 10, 505–509 (2014).

    Article  CAS  Google Scholar 

  14. Zhu, X., Littlewood, P. B., Hybertsen, M. S. & Rice, T. M. Exciton condensate in semiconductor quantum well structures. Phys. Rev. Lett. 74, 1633–1636 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Merkl, P. et al. Ultrafast transition between exciton phases in van der Waals heterostructures. Nat. Mater. 18, 691–696 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Tartakovskii, A. Excitons in 2D heterostructures. Nat. Rev. Phys. 2, 8–9 (2020).

    Article  Google Scholar 

  17. Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Unuchek, D. et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 560, 340–344 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Nechaev, I. A. & Chulkov, E. V. Quasiparticle band gap in the topological insulator Bi2Te3. Phys. Rev. B 88, 165135 (2013).

    Article  ADS  Google Scholar 

  21. Dubroka, A. et al. Interband absorption edge in the topological insulators \({{\rm{Bi}}}_{2}{({{\rm{Te}}}_{1-x}{{\rm{Se}}}_{x})}_{3}\). Phys. Rev. B 96, 235202 (2017).

    Article  ADS  Google Scholar 

  22. Mohelský, I. et al. Landau level spectroscopy of Bi2Te3. Phys. Rev. B 102, 085201 (2020).

    Article  ADS  Google Scholar 

  23. Henk, J. et al. Complex spin texture in the pure and Mn-doped topological insulator Bi2Te3. Phys. Rev. Lett. 108, 206801 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Michiardi, M. et al. Bulk band structure of Bi2Te3. Phys. Rev. B 90, 075105 (2014).

    Article  ADS  CAS  Google Scholar 

  25. Sánchez-Barriga, J. et al. Anisotropic effect of warping on the lifetime broadening of topological surface states in angle-resolved photoemission from Bi2Te3. Phys. Rev. B 90, 195413 (2014).

    Article  ADS  Google Scholar 

  26. Hajlaoui, M. et al. Tuning a schottky barrier in a photoexcited topological insulator with transient dirac cone electron-hole asymmetry. Nat. Commun. 5, 3003 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Madéo, J. et al. Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors. Science 370, 1199 (2020).

    Article  ADS  PubMed  Google Scholar 

  28. Dong, S. et al. Direct measurement of key exciton properties: energy, dynamics, and spatial distribution of the wave function. Nat. Sci. 1, e10010 (2021).

    Article  CAS  Google Scholar 

  29. Sobota, J. A. et al. Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Te3. Phys. Rev. Lett. 108, 117403 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Zhu, S. et al. Ultrafast electron dynamics at the Dirac node of the topological insulator Sb2Te3. Sci. Rep. 5, 13213 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sánchez-Barriga, J. et al. Ultrafast spin-polarization control of Dirac fermions in topological insulators. Phys. Rev. B 93, 155426 (2016).

    Article  ADS  Google Scholar 

  32. Trovatello, C. et al. The ultrafast onset of exciton formation in 2D semiconductors. Nat. Commun. 11, 5277 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Karni, O. et al. Structure of the moiré exciton captured by imaging its electron and hole. Nature 603, 247–252 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Steinhoff, A. et al. Exciton fission in monolayer transition metal dichalcogenide semiconductors. Nat. Commun. 8, 1166 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hsieh, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Su-Yang, X. et al. Topological phase transition and texture inversion in a tunable topological insulator. Science 332, 560–564 (2011).

    Article  ADS  Google Scholar 

  37. Jozwiak, C. et al. Widespread spin polarization effects in photoemission from topological insulators. Phys. Rev. B 84, 165113 (2011).

    Article  ADS  Google Scholar 

  38. Lin, Y. et al. Exciton-driven renormalization of quasiparticle band structure in monolayer MoS2. Phys. Rev. B 106, L081117 (2022).

    Article  ADS  CAS  Google Scholar 

  39. Hou, Y. et al. Millimetre-long transport of photogenerated carriers in topological insulators. Nat. Commun. 10, 5723 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, R., Erten, O., Wang, B. & Xing, D. Y. Prediction of a topological p + ip excitonic insulator with parity anomaly. Nat. Commun. 10, 210 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  41. Smallwood, C. L., Jozwiak, C., Zhang, W. E. & Lanzara, A. An ultrafast angle-resolved photoemission apparatus for measuring complex materials. Rev. Sci. Instrum. 83, 123904 (2012).

    Article  ADS  PubMed  Google Scholar 

  42. Jozwiak, C. et al. A high-efficiency spin-resolved photoemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry. Rev. Sci. Instrum. 81, 053904 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Gotlieb, K., Hussain, Z., Bostwick, A., Lanzara, A. & Jozwiak, C. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer. Rev. Sci. Instrum. 84, 093904 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  PubMed  Google Scholar 

  45. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. The Materials Project. Materials data on Bi2Te3 (sg:166) https://doi.org/10.17188/1274403 (2016).

  47. Marini, A., Hogan, C., Grüning, M. & Varsano, D. yambo: an ab initio tool for excited state calculations. Comput. Phys. Commun. 180, 1392–1403 (2009).

    Article  ADS  CAS  Google Scholar 

  48. Sangalli, D. et al. Many-body perturbation theory calculations using the yambo code. J. Phys. Condens. Matter 31, 325902 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Hamann, D. R. Optimized norm-conserving vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).

    Article  ADS  Google Scholar 

  50. van Setten, M. J. et al. The pseudodojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018).

    Article  ADS  Google Scholar 

  51. Miranda, H. P. C., Sanchez, A. M., Paleari, F. & Morlet, A. yambopy. GitHub https://github.com/yambo-code/yambopy (2020).

  52. Mostofi, A. A. et al. An updated version of wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014).

    Article  ADS  CAS  MATH  Google Scholar 

  53. Wu, Q., Zhang, S., Song, H.-F., Troyer, M. & Soluyanov, A. A. Wanniertools: an open-source software package for novel topological materials. Comput. Phys. Commun. 224, 405–416 (2018).

    Article  ADS  CAS  Google Scholar 

  54. Rustagi, A. & Kemper, A. F. Photoemission signature of excitons. Phys. Rev. B 97, 235310 (2018).

    Article  ADS  CAS  Google Scholar 

  55. Kobayashi, M. et al. Unveiling the impurity band induced ferromagnetism in the magnetic semiconductor (Ga,Mn)As. Phys. Rev. B 89, 205204 (2014).

    Article  ADS  Google Scholar 

  56. Han, S. W., Cha, G.-B., Kim, K. & Hong, S. C. Hydrogen interaction with a sulfur-vacancy-induced occupied defect state in the electronic band structure of MoS2. Phys. Chem. Chem. Phys. 21, 15302–15309 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Strocov, V. N. et al. k-resolved electronic structure of buried heterostructure and impurity systems by soft-X-ray ARPES. J. Electron Spectros. Relat. Phenomena 236, 1–8 (2019).

    Article  CAS  Google Scholar 

  58. Man, M. K. L. et al. Experimental measurement of the intrinsic excitonic wave function. Sci. Adv. 7, eabg0192 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hedayat, H. et al. Ultrafast evolution of bulk, surface and surface resonance states in photoexcited Bi2Te3. Sci. Rep. 11, 4924 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jung, W. et al. Warping effects in the band and angular-momentum structures of the topological insulator Bi2Te3. Phys. Rev. B 84, 245435 (2011).

    Article  ADS  Google Scholar 

  61. Wang, Y. H. et al. Observation of a warped helical spin texture in Bi2Se3 from circular dichroism angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 107, 207602 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Wang, Y. & Gedik, N. Circular dichroism in angle-resolved photoemission spectroscopy of topological insulators. Phys. Status Solidi RRL 7, 64–71 (2013).

    Article  Google Scholar 

  63. Scholz, M. R. et al. Reversal of the circular dichroism in angle-resolved photoemission from Bi2Te3. Phys. Rev. Lett. 110, 216801 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Kondo, T. et al. Visualizing the evolution of surface localization in the topological state of Bi2Se3 by circular dichroism in laser-based angle-resolved photoemission spectroscopy. Phys. Rev. B 96, 241413 (2017).

    Article  ADS  Google Scholar 

  65. Zhang, J. et al. Probing spin chirality of photoexcited topological insulators with circular dichroism: multi-dimensional time-resolved ARPES on Bi2Te2Se and Bi2Se3. J. Electron Spectros. Relat. Phenomena 253, 147125 (2021).

  66. Seiler, D. G., Littler, K. H. & Littler, C. L. Bound excitons in the narrow-gap semiconductor InSb. Semicond. Sci. Technol. 1, 383–386 (1986).

    Article  ADS  CAS  Google Scholar 

  67. Seisyan, R. P. Diamagnetic excitons and exciton magnetopolaritons in semiconductors. Semicond. Sci. Technol. 27, 053001 (2012).

    Article  ADS  Google Scholar 

  68. Austin, I. G. The optical properties of bismuth telluride. Proc. Phys. Soc. 72, 545–552 (1958).

    Article  ADS  CAS  Google Scholar 

  69. Sehr, R. & Testardi, L. R. The optical properties of p-type Bi2Te3 Sb2Te3 alloys between 2-15 microns. J. Phys. Chem. Solids 23, 1219–1224 (1962).

    Article  ADS  CAS  Google Scholar 

  70. Greenaway, D. L. & Harbeke, G. Band structure of bismuth telluride, bismuth selenide and their respective alloys. J. Physics Chem. Solids 26, 1585–1604 (1965).

    Article  ADS  CAS  Google Scholar 

  71. Thomas, G. A. et al. Large electronic-density increase on cooling a layered metal: doped Bi2Te3. Phys. Rev. B 46, 1553–1556 (1992).

    Article  ADS  CAS  Google Scholar 

  72. Vilaplana, R. et al. High-pressure vibrational and optical study of Bi2Te3. Phys. Rev. B 84, 104112 (2011).

    Article  ADS  Google Scholar 

  73. Chapler, B. C. et al. Infrared electrodynamics and ferromagnetism in the topological semiconductors Bi2Te3 and Mn-doped Bi2Te3. Phys. Rev. B 89, 235308 (2014).

    Article  ADS  Google Scholar 

  74. Peiris, F. C. et al. Optical properties of Bi2(Te1−xSex)3 thin films. J. Vac. Sci. Technol. B 37, 031205 (2019).

    Article  Google Scholar 

  75. Sánchez-Barriga, J. et al. Subpicosecond spin dynamics of excited states in the topological insulator Bi2Te3. Phys. Rev. B 95, 125405 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank H. Tajima, Y. Lin, C. Stansbury, N. Dale, D. Eilbott, M. Huber and M. Takahashi for useful discussions. Both the experimental and theoretical parts of this work were primarily supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE-AC02-05CH11231 (Ultrafast Materials Science Program KC2203). R.M. acknowledges additional support from the Funai Foundation for Information Technology. K.T. acknowledges additional support from the JSPS Overseas Research Fellowship and J.E.M. acknowledges additional support from a Simons Investigatorship. T.M. was supported by JST PRESTO (JPMJPR19L9) and JST CREST (JPMJCR19T3).

Author information

Authors and Affiliations

Authors

Contributions

R.M. and A.L. initiated and directed this research project. R.M., P.A. and S.C. carried out the trARPES measurements. R.M., S.C. and K.C. carried out the stARPES measurements. R.M. and K.T. provided the theoretical models and calculations. T.M. and J.E.M. provided theoretical insights. R.M. analysed the ARPES data and wrote the text, with feedback from all authors.

Corresponding authors

Correspondence to Ryo Mori or Alessandra Lanzara.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Dmitry Efimkin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Time-resolved ARPES spectra over a wide energy range.

Non-equilibrium ARPES spectrum of energy versus momentum cuts along the \(\bar{\Gamma }-\bar{{\rm{M}}}\) direction, measured at 20 K before and 0, 0.2, 0.4, 0.6, 1, 3, and 5, 10 ps after pumping from left to right. At the earliest stage (0-0.2 ps), the upper surface resonance state (SR2) is observed. Photoexcited electrons in SR2 decay fast to populate the lower surface resonance state (SR1) and bulk conduction band (CB), consistent with previous study75.

Extended Data Fig. 2 Time-resolved ARPES spectra over a wide energy range with different temperatures.

a, Non-equilibrium ARPES spectrum of energy versus momentum cuts along the \(\bar{\Gamma }-\bar{{\rm{M}}}\) direction, measured at 20 K before and 1, 2.5, 5, 10, 20, 30 ps after pumping from left to right. The white dashed-line represent the Fermi level. b, The same as panel a, but measured at 180 K.

Extended Data Fig. 3 Temperature dependence of a bulk band gap in Bi2Te3.

a, Time-resolved ARPES spectra of energy versus momentum cuts along \(\bar{\Gamma }-\bar{{\rm{M}}}\) direction for the p-type sample at 15 ps after pumping, measured at 180 K. The red bars on the top represent the integrated momentum range for the EDCs shown in be. Four energy levels are defined here; the energy level of the Dirac point (EDP), the bulk valence band maximum (EV BM), the bulk conduction band local minimum at \(\bar{\Gamma }\) point (ECBG), and the bulk indirect band gap (EIDG). The energy levels are relative energy to the EDP. Note that the intensity in the black-dashed squared area is enhanced for better visuality. b,c, Integrated EDCs around \(\bar{\Gamma }\) point, measured at 20 K (red), 80 K (blue), 180 K (green), and 200 K (orange). The weak signals from the bulk conduction band local minimum around \(\bar{\Gamma }\) point (see the black dashed square in b) are enlarged in c. d, Integrated EDCs around the bulk valence band maximum. Each color of EDCs corresponds to b,c. e Extracted values of ECBG, EV BM, and EIDG for each temperature. f, The schematics of the temperature dependence of the bulk structure in Bi2Te3. When the temperature increases, only the energy level of the conduction band minimum (ECBM) decreases, and the direct band gap (EDG) shrinks (see the red dashed line).

Extended Data Fig. 4 Bulk conduction bands.

a, ARPES spectrum along \(\bar{\Gamma }-\bar{{\rm{M}}}\) direction for the n-type sample, measured at 40 K (left). The red dots in ARPES spectrum represent the peaks position extracted from the energy distribution curves (EDCs) from k1 to k2 and the black line represents the extracted band dispersion, corresponding to the bulk conduction band (CB). b, The EDC at the \(k{\prime} \) (see the dashed-line in panel a) where the both topological surface state (TSS) and CB are observed for the n- (top) and the p-type samples (bottom). The p-type’s EDC is extracted from non-equilibrium ARPES spectrum measured at 20 K, integrated over 0.2-1.6 ps of delay time (for better stats). c,d, EDCs for the n-type (c) and the p-type (d). The blue and red marks in right panel show the peaks position of the topological surface state and the bulk conduction band, respectively. e, Comparison of the bulk conduction bands between the n- and p-type samples. Note that energy levels are plotted with respect to the Dirac point energy (EDP) for a direct comparison. The error bars in a,e represent the uncertainties of peak positions from Lorentzian fits.

Extended Data Fig. 5 Two distinct energy levels in EDCs.

a, Non-equilibrium ARPES spectrum of energy versus momentum cut measured at 20 K with EDCs at kbuildup. The red horizontal marks represent the estimated peak positions for bulk (CB) and exciton buildup (EX). b, Energy distribution curves (EDCs) at various delay times at 20 K at kbuildup (see the blue solid line in panel (a)). From bottom to top, each EDC corresponds to each delay time with an increment of 0.4 ps. The dashed-lines are guide to the eye for the estimated peak positions.

Extended Data Fig. 6 Temperature dependence of buildup.

a, The intensity buildup across the various temperature. From left to right, the measurement temperature is 20, 40, 80, 90, 140, and 180 K. The data are taken at the delay times when the bulk states are relaxed for each temperature. b, Temperature dependence of intensity of the buildup. Note the intensity is normalized by the intensity of the proximate TSS. The error bars are estimated by absolute maximum variations of the integration. c, Transient electronic temperature of the intensity buildup for each measurement temperature. The black horizontal line indicates 160 K (~ 14 meV). The error bars are from the uncertainty in the fitting and experimental resolution.

Extended Data Fig. 7 Fine delay scan at 180 K.

a, Non-equilibrium ARPES spectrum of energy versus momentum cut measured at 180 K. b, Energy distribution curves (EDCs) at ten representative delay times at 180 K, obtained by integration over the momentum range around kbuildup. From bottom to top, each unlabeled EDC corresponds to each delay time with an increment of 0.4 ps. The dashed-lines are guide to the eye for the estimated peak positions.

Extended Data Fig. 8 In-plane momentum- and real-space distribution of the Wannier-exciton in Bi2Te3.

a, In-plane constant energy map at the energy level of the Wannier-exciton signature (E − EDP = 0.305 eV) obtained at the delay time t = 20 ps. The solid black line represent the surface projected BZ. The data are symmetrized assuming six-fold symmetry and focusing only on the intensity buildup. b, 2D Fourier transform of the momentum-resolved photoemission intensity I(kx,ky) recovers the real-space image I(rx,ry), featuring the electron density distribution of the excitonic wavefunction. The high frequency oscillations reflect the hexagonal lattice structure.

Extended Data Fig. 9 Circular dichroism.

a, Sum of non-equilibrium ARPES spectrum of energy versus momentum cut along \(\bar{\Gamma }-\bar{{\rm{M}}}\) measured at time delay 2 ps with the left (CL) and right circularly polarized photons (CR). The color scale in the gray dashed area is enhanced. The black dashed lines are guide for the eye, representing the bulk conduction band and the TSS-bulk continuum. b,c, Circular dichroism (CD) for for delay time 2 ps (b) and 10 ps (c), obtained by (CL − CR)/(CL + CR). The black arrow indicates the location of the bulk state. The black dashed lines in b are guide for the eye, representing the bulk conduction band and the TSS-bulk continuum. The black circle in panel c indicates the observed intensity buildup. d,e, The sum spectrum (CL + CR) (d) and the CD spectrum (CL − CR)/(CL + CR) (e), focusing on the bulk conduction band and the bulk-TSS connection (see the gray dashed square in panel a at time delay 2 ps. The black dashed lines are guide for the eye, representing the bulk conduction band and the TSS-bulk continuum. f, The CD spectra at time delay 10 ps with enhanced color scale, focusing on the exciton intensity buildup.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, equations (1)–(13) and References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, R., Ciocys, S., Takasan, K. et al. Spin-polarized spatially indirect excitons in a topological insulator. Nature 614, 249–255 (2023). https://doi.org/10.1038/s41586-022-05567-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05567-3

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing