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            Abstract
Pathogens generate ubiquitous selective pressures and hostâ€“pathogen interactions alter social behaviours in many animals1,2,3,4. However, very little is known about the neuronal mechanisms underlying pathogen-induced changes in social behaviour. Here we show that in adult Caenorhabditis elegans hermaphrodites, exposure to a bacterial pathogen (Pseudomonas aeruginosa) modulates sensory responses to pheromones by inducing the expression of the chemoreceptor STR-44 to promote mating. Under standard conditions, C. elegans hermaphrodites avoid a mixture of ascaroside pheromones to facilitate dispersal5,6,7,8,9,10,11,12,13. We find that exposure to the pathogenic Pseudomonas bacteria enables pheromone responses in AWA sensory neurons, which mediate attractive chemotaxis, to suppress the avoidance. Pathogen exposure induces str-44 expression in AWAÂ neurons, a process regulated by a transcription factor zip-5 that also displays a pathogen-induced increase in expression in AWA. STR-44 acts as a pheromone receptor and its function in AWAÂ neurons is required for pathogen-induced AWA pheromone response and suppression of pheromone avoidance. Furthermore, we show that C. elegans hermaphrodites, which reproduce mainly through self-fertilization, increase the rate of mating with males after pathogen exposure and that this increase requires str-44 in AWAÂ neurons. Thus, our results uncover a causal mechanism for pathogen-induced social behaviour plasticity, which can promote genetic diversity and facilitate adaptation of the host animals.
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                    Fig. 1: Exposure to pathogenic Pseudomonas strain PA14 suppresses pheromone avoidance in hermaphrodites and induces the pheromone response in AWA.[image: ]


Fig. 2: Pathogenic Pseudomonas PA14 induces expression of str-44 in AWA.[image: ]


Fig. 3: STR-44 acts in AWA as a pheromone receptor to regulate pheromone response in pathogen-exposed worms.[image: ]


Fig. 4: Pathogen exposure regulates str-44 expression and pheromone response via zip-5 to promote mating.[image: ]
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Extended data figures and tables

Extended Data Fig. 1 Pathogen exposure suppresses avoidance of ascaroside pheromones.
a, b, k, Schematics for bacteria exposure (a), quadrant assay on ascaroside pheromones (b), and histamine treatment during chemotaxis (k). câ€“j, Avoidance of the mixture of ascaroside pheromones ascr#2, ascr#3 and ascr#5 over a range of concentrations indicated for each ascaroside at equilibrium (câ€“g) or avoidance of individual ascarosides (hâ€“j, 10â€‰nM each at equilibrium) in wild-type adult hermaphrodites when exposed to E. coli OP50 or P. aeruginosa PA14. Positive avoidance index, avoidance. In box plots, the centre line shows the median, box edges delineate 1st and 3rd quartiles and whiskers extend to minimum and maximum values. Numbers in parentheses, number of different assays. Dots, avoidance indexes of individual assays. P values are derived from two-tailed unpaired t test, asterisks indicate significant difference, **** Pâ€‰<â€‰0.0001, *** Pâ€‰<â€‰0.001, * Pâ€‰<â€‰0.05; ns, not significant. P values are shown inÂ Source data.
Source data


Extended Data Fig. 2 Pathogen exposure induces pheromone response of AWA neurons.
aâ€“d, Traces of GCaMP6 signals in AWA neurons of wild-type adult hermaphrodites in response to pheromones at different concentrations when exposed to OP50 or PA14 (a,c) and quantification of average GCaMP6 signals in AWA (b,d)Â during pheromone stimulation in a,c, respectively. Phe, pheromone mixture of ascr#2,Â ascr#3Â and ascr#5Â (at indicated concentrations for each). Lines in traces, mean; shades, s.e.m. (a,c). Fb is baseline, defined asÂ average GCaMP6 signal in the first 30â€‰s. In box plots, the centre line shows the median, box edges delineate 1st and 3rd quartiles and whiskers extend to minimum and maximum values.Â Numbers in parentheses, number of different wormsÂ (b,d). Dots, average GCaMP6 signals of individual worms during pheromone stimulationÂ (b,d). P values are derived from two-tailed Mann-Whitney test, asterisks indicate significant difference, **** Pâ€‰<â€‰0.0001, ** Pâ€‰<â€‰0.01. e, Paradigm of a long-term exposure to bacterial pathogen PA14. f, Avoidance of ascaroside pheromones in wild-type adult hermaphrodites exposed to OP50 or PA14 in a long-term exposure paradigm as shown in (e). Pheromones, mixture of ascr#2,Â ascr#3Â and ascr#5 (10â€‰nM each at equilibrium). Positive avoidance index, avoidance. Numbers in parentheses, number of different assays.Â In box plots, the centre line shows the median, box edges delineate 1st and 3rd quartiles and whiskers extend to minimum and maximum values. Dots, avoidance indexes of individual assays. P values are derived from two-tailed unpaired t test, asterisks indicate significant difference, ** Pâ€‰<â€‰0.01. g, h, Traces of GCaMP6 signals in AWA neurons of wild-type adult hermaphrodites in response to ascaroside pheromones when exposed to OP50 or PA14 in the long-term exposure paradigm (g) and quantification of average GCaMP6 signals in AWA (h)Â during pheromone stimulationÂ in g. Phe, pheromones, individual or mixture of ascr#2,Â ascr#3Â and ascr#5 (1â€‰Î¼M each). Lines in traces, mean;.shades, s.e.m.Â (g). Fb is baseline, defined asÂ average GCaMP6 signal in the first 30â€‰s. In box plots, the centre line shows the median, box edges delineate 1st and 3rd quartiles and whiskers extend to minimum and maximum values. Numbers in parentheses, number of different worms (h). Dots, average GCaMP6 signals of individual worms during pheromone stimulation (h). P values are derived from One-way ANOVA with Dunnettâ€™s multiple comparisons test, asterisks indicate significant difference, **** Pâ€‰<â€‰0.0001, ** Pâ€‰<â€‰0.01; ns, not significant. iâ€“l, Traces of GCaMP6 signal in AWA neurons of unc-13(e51) (i) or unc-31(e928) (k) mutant adult hermaphrodites in response to pheromones when exposed to OP50 or PA14 and quantification of average GCaMP6 signals (j,l)Â during pheromone stimulationÂ in i,k, respectively. Phe, Pheromone mixture of ascr#2,Â ascr#3Â and ascr#5 (1â€‰Î¼M each). Lines in traces, mean; shades, s.e.m.Â (i,k). Fb is baseline, defined as average GCaMP6 signal in the first 30â€‰s. In box plots, the centre line shows the median, box edges delineate 1st and 3rd quartiles and whiskers extend to minimum and maximum values.Â Numbers in parentheses, number of different wormsÂ (j,l). Dots, average GCaMP6 signals of individual worms during pheromone stimulationÂ (j,l). P values are derived from two-tailed unpaired t test, asterisks indicate significant difference, **** Pâ€‰<â€‰0.0001, ** Pâ€‰<â€‰0.01. P values are shown inÂ Source data.
Source data


Extended Data Fig. 3 Different roles of sensory neurons ASK, ASI and ADL in pheromone response and PA14-induced modulation.
aâ€“c, Avoidance of ascaroside pheromones when exposed to E. coli OP50 or P. aeruginosa PA14 (avoidance index) and modulation of pheromone response by PA14 (modulation index) in wild-type adult hermaphrodites and transgenic adult hermaphrodites in which ASK neurons are genetically ablated (a), or ASI neurons are genetically ablated (b), or neurotransmission of ADL is blocked (c). Pheromones, mixture of ascr#2,Â ascr#3Â and ascr#5 (10â€‰nM each at equilibrium). Positive avoidance index, avoidance. Positive modulation index, suppression of avoidance by PA14 exposure. In box plots, the centre line shows the median, box edges delineate 1st and 3rd quartiles and whiskers extend to minimum and maximum values. Numbers in parentheses, number of different assays. Dots, avoidance indexes or modulation indexes of individual assays. P values are derived from Two-way ANOVA with Tukeyâ€™s multiple comparisons test (avoidance index in a-c) or two-tailed unpaired t test (modulation index in a and c) or two-tailed Mann-Whitney test (modulation index in b), asterisks indicate significant difference, **** Pâ€‰<â€‰0.0001, *** Pâ€‰<â€‰0.001, * Pâ€‰<â€‰0.05; ns, not significant. P values are shown inÂ Source data.
Source data


Extended Data Fig. 4 Exposure to pathogenic Serratia bacteria induces pheromone response of AWA.
a, Schematic ofÂ exposure to different bacteria strains for calcium imaging analysis. b,c, Traces of GCaMP6 signals in AWA neurons of wild-type adult hermaphrodites in response to ascaroside pheromones after 4â€“6â€‰h exposure to different bacteria strains (b) and quantification of average GCaMP6 signals in AWAÂ (c) during pheromone stimulationÂ in b. Phe, pheromone mixture of ascr#2,Â ascr#3Â and ascr#5 (1â€‰Î¼M each). Lines in traces, mean; shades, s.e.m.Â (b). Fb isÂ baseline, defined asÂ average GCaMP6 signal in the first 30â€‰s. In box plots, the centre line shows the median, box edges delineate 1st and 3rd quartiles and whiskers extend to minimum and maximum values.Numbers in parentheses, number of different wormsÂ (c). Dots, average GCaMP6 signals of individual worms during pheromone stimulationÂ (c). P values are derived from Kruskal-Wallis test with Dunnâ€™s multiple comparisons test, asterisks indicate significant difference, *** Pâ€‰<â€‰0.001; ns, not significant. P values are shown in Source data. d, e, Schematics for TRAP-RNAseq (d) and for exposure to different bacteria strains for TRAP-RNAseq analysis (e).
Source data


Extended Data Fig. 5 Exposure to PA14 does not induce AWA expression of several previously identified receptors for pheromone sensing.
aâ€“g, Sample images (aâ€“f) and quantification (g) for srg-36p::gfp, daf-37p::gfp, srd-1p::gfp, srx-44p::gfp, srbc-64p::gfp, and srbc-66p::gfp expression in AWA neurons in adult hermaphrodites exposed to OP50 or PA14 for 4â€“6â€‰h (reporters are indicated by the name of the promoters in g). Arrows point to cell bodies of several sensory neurons. Lines outline worm bodies. Scale barÂ (applicable to images in the same row), 20â€‰Î¼m. A, anterior. D, dorsalÂ (arrowsÂ pointÂ out of the page for OP50 condition in cÂ and for PA14 condition in d). Intensity of fluorescence signals is normalized using average intensity of AWA expression of str-44p::gfp in OP50-exposed worms measured in parallel. In box plots, the centre line shows the median, box edges delineate 1st and 3rd quartiles and whiskers extend to minimum and maximum values.Â Numbers in parentheses, number of different neuronsÂ (g). Dots, signals of individual neuronsÂ (g). P values are derived from Two-way ANOVA with Bonferroniâ€™s multiple comparisons test, asterisks indicate significant difference, **** Pâ€‰<â€‰0.0001; ns, not significant. P values are shown inÂ Source data.
Source data


Extended Data Fig. 6 TRAP-RNAseq analysis on AWA neurons in worms exposed to OP50, or PA14, or PA14-gacA(â€“), or P. fluorescens.
a, Avoidance of ascaroside pheromones in adult transgenic hermaphrodites expressing eGFP::RPL-1 selectively in AWA using gpa-4delta6p promoter exposed to OP50 or PA14 for 4â€“6â€‰h. Pheromones, mixture of ascr#2,Â ascr#3Â and ascr#5 (10â€‰nM each at equilibrium). Positive avoidance index, avoidance. In box plots, the centre line shows the median, box edges delineate 1st and 3rd quartiles and whiskers extend to minimum and maximum values.Â Numbers in parentheses, numbers of different assays. Dots, avoidance indexes of individual assays. P values are derived from Two-way ANOVA with Tukeyâ€™s multiple comparisons test, asterisks indicate significant difference, ** Pâ€‰<â€‰0.01; ns, not significant. P values are shown in Source data. b, Expression of a transcriptional reporter using an AWA-specific promoter (gpa-4delta6p) in adult transgenic hermaphrodites exposed to OP50 or PA14 for 4â€“6â€‰h. Intensity of fluorescence signals is normalized using average intensity of AWA expression of gpa-4delta6p::gfp in OP50-exposed worms measured in parallel. In box plots, the centre line shows the median, box edges delineate 1st and 3rd quartiles and whiskers extend to minimum and maximum values.Â Numbers in parentheses, number of different neurons. Dots, signals of individual neurons. P values are derived from two-tailed Mann-Whitney test; ns, not significant. P values are shown in Source data. c, d, Principal component analysis (c) and hierarchical clustering (d)Â of samples based on the expression of 806 genes that were differentially expressed in AWA neurons under 4 conditions (exposure to OP50, or PA14, or PA14-gacA(-), or P. fluorescens). log2CPM (counts per million) values calculated using cpmÂ function in edgeR package represent expression levels. OP1â€“3, samples 1â€“3 for OP50-exposed hermaphrodites; PA1â€“3, samples 1â€“3 for PA14-exposed hermaphrodites; gacA1â€“3, samples 1â€“3 for PA14-gacA(-)-exposed hermaphrodites; Pf1â€“3, samples 1â€“3 for P. fluorescens-exposed hermaphrodites. e, f, 57 genes showing differential expression in AWAÂ between PA14-exposed worms and OP50-exposed worms (e, FDR < 0.1) and differential expression in AWAÂ between PA14-gacA(-)-exposed worms and OP50-exposed worms (f, FDR < 0.1), but showing no difference between P. fluorescens-exposed worms and OP50-exposed worms. Dashed lines indicate 1 or -1.Â FC, fold changeÂ (in comparison withÂ expression in OP50-exposed worms). P values and FDR are shown in Supplementary DataÂ 5.
Source data


Extended Data Fig. 7 Exposure to PA14 or PA14-gacA(-) induces expression of str-44 in AWA and analysis of str-44 function in pheromone response.
a, Sample images of adult transgenic hermaphrodites expressing str-44p::gfp exposed to OP50, PA14, PA14-gacA(-) or P. fluorescens for 4â€“6â€‰h. Arrows indicate neuronal cell bodies. Lines outline worm bodies. Scale barÂ (applicable to images in the same row), 20â€‰Î¼m. A, anterior. D, dorsal. b, Schematic showing the allele str-44(syb5943) that contains the str-44 genomic locus tagged with sequences of T2A peptide and GFP. Boxes indicate protein coding exons. c, Sample images of AWA expression of str-44::T2A-gfp in adult str-44(syb5943) hermaphrodites containing the str-44 genomic locus tagged with a gfp sequence when exposed to OP50 or PA14 for 4â€“6â€‰h. Dashed lines indicate enlarged views. Arrows indicate neuronal cell bodies. Lines outline worm bodies. Scale barÂ (applicable to images in the same row), 20â€‰Î¼m. A, anterior. D, dorsalÂ (arrows point slightly out of the page). d, Quantification of AWA expression of str-44::T2A-gfp in adult str-44(syb5943) hermaphrodites containing the str-44 genomic locus tagged with a gfp sequence when exposed to OP50, PA14, PA14-gacA(-) or P. fluorescens for 4â€“6â€‰h. Intensity of fluorescence signals is normalized using average intensity of AWA expression of str-44::T2A-gfp in OP50-exposed worms measured in parallel. In box plots, the centre line shows the median, box edges delineate 1st and 3rd quartiles and whiskers extend to minimum and maximum values.Â  Numbers in parentheses, number of different neurons. Dots, signals of individual neurons. P values are derived from Kruskal-Wallis test with Dunnâ€™s multiple comparisons test, asterisks indicate significant difference, **** Pâ€‰<â€‰0.0001; ns, not significant. P values are shown in Source data. e, Schematic showing the deletion mutation in the str-44(syb4262) allele. f, Avoidance index in wild-type and str-44 mutant adult hermaphrodites, and in transgenic adult hermaphrodites expressing a wild-type str-44 DNA using either str-44 promoter or AWA-specific promoter gpa-4delta6p in str-44 mutant background exposed to OP50 or PA14. Pheromones, mixture of ascr#2,Â ascr#3Â and ascr#5 (10â€‰nM each at equilibrium). Positive avoidance index, avoidance. In box plots, the centre line shows the median, box edges delineate 1st and 3rd quartiles and whiskers extend to minimum and maximum values.Â Numbers in parentheses, number of different assays. Dots, avoidance indexes of individual assays. P values are derived from Two-way ANOVA with Tukeyâ€™s multiple comparisons test, asterisks indicate significant difference, *** Pâ€‰<â€‰0.001, ** Pâ€‰<â€‰0.01, * Pâ€‰<â€‰0.05; ns, not significant. P values are shown inÂ Source data.
Source data


Extended Data Fig. 8 AWA expression of str-44 is regulated by biological features associated with live PA14 cells and the function of zip-5, jmjd-3.1 and set-2 in AWA.
aâ€“c, Quantification of str-44p::gfp signals in AWA in adult hermaphrodites exposed to OP50 or PA14 for 4â€“6â€‰h, or to a heat shock at 32â€‰Â°C for 8â€‰h, or to 10â€‰mM hydrogen peroxide for 24â€‰h (a), or to a osmotic shock at 300 mOsm for 24â€‰h (b), or to OP50 and PA14 cultivated under conditions that induce a higher level of virulence in PA14 (c, Methods). Intensity of fluorescence signals is normalized using average intensity of str-44p::gfp in OP50-exposed worms measured in parallel. d, Schematic of exposure to PA14 odorants by placing a lawn of PA14 on the lid. e,f, Traces of GCaMP6 signals in AWA neurons of wild-type adult hermaphrodites in response to pheromones afterÂ 4â€“6â€‰h exposure to OP50, or PA14, or PA14 odorants (a lawn of PA14 on the lid) (e) and quantification of average GCaMP6 signals in AWAÂ (f) during pheromone stimulationÂ in e. Phe, pheromone mixture of ascr#2,Â ascr#3Â and ascr#5 (1â€‰Î¼M each). Lines in traces, mean; shades, s.e.m. FbÂ isÂ baseline, defined asÂ average GCaMP6 signal in the first 30â€‰s. gâ€“j, Exposure to supernatant of PA14 culture does not induce AWA expression of str-44p::gfp (g), but exposure to PA14 cells with supernatant removed does (h); and heat-killing of PA14 cells abolishes the induction (i). Exposure to E. coli expressing the exotoxin ToxA of PA14 also does not induce str-44 expression (j). Intensity of fluorescence signals is normalized using average intensity of str-44p::gfp in OP50-exposed worms measured in parallel. pET100, cloning vector for ToxA. k,m,q,s,t, Avoidance of pheromones in wild-type, osm-9 mutant (k), zip-5 mutant (m), jmjd-3.1 mutant (s), or set-2 mutant (t) adult hermaphrodites, or in transgenic adult hermaphrodites specifically expressing in AWA a wild-type zip-5 DNA or a wild-type zip-5 DNA tagged with a sequence of 3xFLAG in zip-5 mutant background (m), or in transgenic adult hermaphrodites specifically expressing in AWA a wild-type zip-5 DNA tagged with a sequence of 3xFLAG in wild-type background (q), or in transgenic adult hermaphrodites expressing specifically in AWA a wild-type jmjd-3.1 DNA or a wild-type set-2 DNA in the respective mutant background (s,t) when exposed to OP50 or PA14 (avoidance indexes in q were measured during sample collection for ChIP-qPCR assays), and modulation of pheromone avoidance by PA14 (k). Pheromones, mixture of ascr#2,Â ascr#3Â and ascr#5 (10â€‰nM each at equilibrium). Positive avoidance index, avoidance. Positive modulation index, suppression of avoidance by PA14 exposure. l, Sample images of adult transgenic hermaphrodites expressing zip-5p::gfp exposed to OP50 or PA14 for 4â€“6â€‰h. Dashed lines indicate enlarged views. Arrows indicate neuronal cell bodies. Scale barÂ (applicable to both images), 20â€‰Î¼m. A, anterior. D, dorsal. n,o,u,v, Quantification of str-44p::gfp signals in AWA in wild-type and zip-5 mutant adult hermaphrodites when exposed to OP50 or PA14 for 4â€“6â€‰h (n), or in wild-type and zip-5 mutant adult hermaphrodites when exposed to OP50 or PA14 for 4â€“6â€‰h or starved for 5â€‰h (o), or in jmjd-3.1 mutant (u) or set-2 mutant (v) hermaphrodites exposed to OP50 or PA14Â for 4-6 h. Intensity of fluorescence signals is normalized using average intensity of str-44p::gfp in OP50-exposed wild-type worms measured in parallel. p, Diagram of qPCR amplicon positions on str-44 genomic locus in ChIP assays for association of ZIP-5::3xFLAG with str-44 sequence. r, Ratio of ChIP signal (% of input) in PA14-exposed worms versus OP50-exposed animals. nâ€‰=â€‰3 independent assays, mean Â± SD. Dots, ratios of individual assays. P values are derived from Two-way ANOVA with Bonferroniâ€™s multiple comparisons test, asterisks indicate significant difference, **** Pâ€‰<â€‰0.0001, *** Pâ€‰<â€‰0.001, ** Pâ€‰<â€‰0.01. P values are shown in Source data. In box plots, the centre line shows the median, box edges delineate 1st and 3rd quartiles and whiskers extend to minimum and maximum values. Numbers in parentheses, number of different neurons (a-c,g-j,n,o,u,v) or different worms (f) or different assays (k,m,q,s,t). Dots, signals of individual neurons (a-c,g-j,n,o,u,v) or individual worms (f), or avoidance indexes (k,m,q,s,t) or modulation indexes (k) of individual assays. P values are derived from Kruskal-Wallis test with Dunnâ€™s multiple comparisons test (a,b,fâ€“j) or two-tailed Mann-Whitney test (c) or Two-way ANOVA with Tukeyâ€™s multiple comparisons test [(avoidance index in k),n,o,q,u,v] or Two-way ANOVA with Bonferroniâ€™s multiple comparisons test (m,s,t) or two-tailed unpaired t test (modulation index in k), asterisks indicate significant difference, **** Pâ€‰<â€‰0.0001, *** Pâ€‰<â€‰0.001, ** Pâ€‰<â€‰0.01, * Pâ€‰<â€‰0.05; ns, not significant. P values are shown inÂ Source data.
Source data


Extended Data Fig. 9 Inactivating npr-1 regulates pheromone response differently from pathogen exposure.
a, Avoidance of pheromones in wild-type and npr-1 mutant adult hermaphrodites. Pheromones, mixture of ascr#2,Â ascr#3Â and ascr#5 (10â€‰nM each at equilibrium). Positive avoidance index, avoidance. bâ€“m, Traces of GCaMP signals in ASK (b,d,f) or ADL (h,j,l) neurons of wild-type adult hermaphrodites in response to ascaroside pheromones when exposed to OP50 or PA14 for 4-6 hÂ and quantification of average GCaMP signals (c,e,g,i,k,m)Â during pheromone stimulationÂ in b,d,f,h,j,l, respectively. Phe, pheromone mixture of ascr#2,Â ascr#3Â and ascr#5 at indicated concentrationsÂ (10nM, 100nM or 1000nM each) (b,d,f,h,l)Â or 100nM ascr#3 (j). Lines in traces, mean; shades, s.e.m.Â (b,d,f,h,j,l). Fb is baseline, defined asÂ average GCaMP signal in the first 30â€‰s. n, Quantification of str-44p::gfp signals in AWA in wild-type and npr-1 mutant adult hermaphrodites. Intensity of fluorescence signals is normalized using average intensity of str-44p::gfp in OP50-exposed wild-type worms. In box plots, the centre line shows the median, box edges delineate 1st and 3rd quartiles and whiskers extend to minimum and maximum values.Â Numbers in parentheses, number of different assays (a) or different worms (c,e,g,i,k,m) or different neurons (n). Dots, Avoidance indexes of individual assays (a) or signals of individual worms (c,e,g,i,k,m) or signals of individual neurons (n). P values are derived from One-way ANOVA with Tukeyâ€™s multiple comparisons test (a) or two-tailed unpaired t test (c,g,i,k,m) or two-tailed Mann-Whitney test (e) or Kruskal-Wallis test with Dunnâ€™s multiple comparisons test (n), asterisks indicate significant difference, **** Pâ€‰<â€‰0.0001, *** Pâ€‰<â€‰0.001; ns, not significant. P values are shown inÂ Source data.
Source data


Extended Data Fig. 10 Wild-type hermaphrodites exposed to OP50 or PA14 produce male progeny by selfing at a very low frequency, and mating on lawns of different sizes.
a, Schematic ofÂ control experiment. b, Percentage of male progeny produced by selfing of adult hermaphrodites exposed to OP50 or PA14 for 4â€‰h. In box plots, the centre line shows the median, box edges delineate 1st and 3rd quartiles and whiskers extend to minimum and maximum values. Numbers in parentheses, number of differentÂ control assays (progeny of 10 hermaphroditesÂ (P0) were scored for each assay). Dots, male progeny in F1 (%) of individual assays. Two-tailed Mann-Whitney test; ns, not significant. P values are shown in Source data. c, Schematic ofÂ mating assaysÂ on lawns of different sizes. d, Frequency of successful mating for adult wild-type hermaphrodites and males on lawns of different sizes. In box plots, the centre line shows the median, box edges delineate 1st and 3rd quartiles and whiskers extend to minimum and maximum values. Numbers in parentheses, number of differentÂ assays (each contains 10 hermaphrodites with their outcome of mating scored individually). Dots, mating frequency of individual assays. P values are derived from One-way ANOVA with Tukeyâ€™s multiple comparisons test, asterisks indicate significant difference, **** Pâ€‰<â€‰0.0001, *** Pâ€‰<â€‰0.001. P values are shown inÂ Source data.
Source data
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Supplementary Data 1
Genes differentially expressed between AWA neurons of adult hermaphrodite worms exposed to PA14 and AWA neurons of adult hermaphrodite worms exposed to OP50 for 4-6 hours (FDR < 0.1). P values are derived from two-sided exact test used in the R package â€œedgeRâ€� and the FDR values are Benjaminiâ€“Hochberg adjusted P values. CPM, counts per million.Â Average log2CPM values were calculated using samples in the comparison.


Supplementary Data 2
Genes differentially expressed between AWA neurons of adult hermaphrodite worms exposed to PA14-gacA(âˆ’) and AWA neurons of adult hermaphrodite worms exposed to OP50 for 4-6 hours (FDR < 0.1). P values are derived from two-sided exact test used in the R package â€œedgeRâ€� and the FDR values are Benjaminiâ€“Hochberg adjusted P values. CPM, counts per million.Â Average log2CPM values were calculated using samples in the comparison.


Supplementary Data 3
Genes differentially expressed between AWA neurons of adult hermaphrodite worms exposed to P. fluorescens and AWA neurons of adult hermaphrodite worms exposed to OP50 for 4-6 hours (FDR < 0.1). P values are derived from two-sided exact test used in the R package â€œedgeRâ€� and the FDR values are Benjaminiâ€“Hochberg adjusted P values. CPM, counts per million.Â Average log2CPM values were calculated using samples in the comparison.


Supplementary Data 4
GO term and KEGG pathways enriched in genes differentially expressed between AWA neurons of adult hermaphrodite worms exposed to PA14 and AWA neurons of adult hermaphrodite worms exposed to OP50 for 4-6 hours, and in genes differentially expressed between AWA neurons of adult hermaphrodite worms exposed to PA14-gacA(âˆ’) and AWA neurons of adult hermaphrodite worms exposed to OP50 for 4-6 hours (FDR < 0.1). P values are derived from one-sided Fisherâ€™s Exact test implemented in DAVID Bioinformatics Resources 6.8.; Benjamini values are adjusted PÂ values using the linear step-up method by Benjamini and Hochberg; FDR (false discovery rate) values are adjusted P values using adaptive linear step-up methodby Benjamini and Hochberg.


Supplementary Data 5
Genes differentially expressed between AWA neurons of adult hermaphrodite worms exposed to PA14 and AWA neurons of adult hermaphrodite worms exposed to OP50 for 4-6 hours, as well as between AWA neurons of adult hermaphrodite worms exposed to PA14-gacA(âˆ’) and AWA neurons of adult hermaphrodite worms exposed to OP50 for 4-6 hours, but not between P. fluorescens and OP50 (FDR < 0.1). P values are derived from two-sided exact test used in the R package â€œedgeRâ€� and the FDR values are Benjaminiâ€“Hochberg adjusted P values. FC, fold change; CPM, counts per million.Â log2CPM values are average log2CPM calculated using samples in each comparison.


Supplementary Data 6
Expression levels measured in AWA TRAPâ€“RNA-seq samples for previously identified receptors for pheromone sensing. CPM, counts per million.Â log2CPM values calculated using all samples are shown.


Supplementary Data 7
Transcription factors differentially expressed between AWA neurons of adult hermaphrodite worms exposed to PA14 and AWA neurons of adult hermaphrodite worms exposed to OP50 for 4-6 hours (FDR < 0.1) and their expression levels measured. P values are derived from two-sided exact test used in the R package â€œedgeRâ€� and the FDR values are Benjaminiâ€“Hochberg adjusted P values. CPM, counts per million.Â log2FC (fold change) and average log2CPM values calculated using samples in the comparison areÂ shown on sheet â€œTF_PA_FDR0.1â€�.Â log2CPM values calculated using all samples are shown on sheet â€œcpmâ€�.
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