Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A long-duration gamma-ray burst with a peculiar origin

Abstract

It is generally believed that long-duration gamma-ray bursts (GRBs) are associated with massive star core collapse1, whereas short-duration GRBs are associated with mergers of compact star binaries2. However, growing observations3,4,5,6 have suggested that oddball GRBs do exist, and several criteria (prompt emission properties, supernova/kilonova associations and host galaxy properties) rather than burst duration only are needed to classify GRBs physically7. A previously reported long-duration burst, GRB 060614 (ref. 3), could be viewed as a short GRB with extended emission if it were observed at a larger distance8 and was associated with a kilonova-like feature9. As a result, it belongs to the type I (compact star merger) GRB category and is probably of binary neutron star (NS) merger origin. Here we report a peculiar long-duration burst, GRB 211211A, whose prompt emission properties in many aspects differ from all known type I GRBs, yet its multiband observations suggest a non-massive-star origin. In particular, substantial excess emission in both optical and near-infrared wavelengths has been discovered (see also ref. 10), which resembles kilonova emission, as observed in some type I GRBs. These observations point towards a new progenitor type of GRBs. A scenario invoking a white dwarf (WD)–NS merger with a post-merger magnetar engine provides a self-consistent interpretation for all the observations, including prompt gamma rays, early X-ray afterglow, as well as the engine-fed11,12 kilonova emission.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The temporal and spectral behaviours of GRB 211211A.
Fig. 2: GRB 211211A in already classified clusters.
Fig. 3: The multiwavelength observations and fitting models.

Data availability

The processed data are presented in the tables and figures of the paper, which are available on reasonable request. The authors point out that the data used in the paper are publicly available, whether through the Fermi/GBM data archive, the Swift data archive or GCN circulars.

Code availability

On reasonable request, the code (mostly in Python) used to produce the results and figures will be provided.

References

  1. Woosley, S. E. & Bloom, J. S. The supernova–gamma-ray burst connection. Annu. Rev. Astron. Astrophys. 44, 507–556 (2006).

    Article  ADS  CAS  Google Scholar 

  2. Berger, E. Short-duration gamma-ray bursts. Annu. Rev. Astron. Astrophys. 52, 43–105 (2014).

    Article  ADS  Google Scholar 

  3. Gehrels, N. et al. A new γ-ray burst classification scheme from GRB 060614. Nature 444, 1044–1046 (2006).

    Article  ADS  CAS  Google Scholar 

  4. Della Valle, M. et al. An enigmatic long-lasting γ-ray burst not accompanied by a bright supernova. Nature 444, 1050–1052 (2006).

    Article  ADS  Google Scholar 

  5. Zhang, B.-B. et al. A peculiarly short-duration gamma-ray burst from massive star core collapse. Nat. Astron. 5, 911–916 (2021).

    Article  ADS  Google Scholar 

  6. Ahumada, T. et al. Discovery and confirmation of the shortest gamma-ray burst from a collapsar. Nat. Astron. 5, 917–927 (2021).

    Article  ADS  Google Scholar 

  7. Zhang, B. et al. Discerning the physical origins of cosmological gamma-ray bursts based on multiple observational criteria: the cases of z = 6.7 GRB 080913, z = 8.2 GRB 090423, and some short/hard GRBs. Astrophys. J. 703, 1696–1724 (2009).

    Article  ADS  Google Scholar 

  8. Zhang, B. et al. Making a short gamma-ray burst from a long one: implications for the nature of GRB 060614. Astrophys. J. 655, L25–L28 (2007).

    Article  ADS  CAS  Google Scholar 

  9. Yang, B. et al. A possible macronova in the late afterglow of the long-short burst GRB 060614. Nat. Commun. 6, 7323 (2015).

    Article  ADS  CAS  Google Scholar 

  10. Rastinejad, J. C. et al. A kilonova following a long-duration gamma-ray burst at 350 Mpc. Nature https://doi.org/10.1038/s41586-022-05390-w (2022).

  11. Yu, Y.-W., Zhang, B. & Gao, H. Bright “merger-nova” from the remnant of a neutron star binary merger: a signature of a newly born, massive, millisecond magnetar. Astrophys. J. Lett. 776, L40 (2013).

    Article  ADS  Google Scholar 

  12. Ai, S., Zhang, B. & Zhu, Z. Engine-fed kilonovae (mergernovae) - I. Dynamical evolution and energy injection/heating efficiencies. Mon. Not. R. Astron. Soc. 516, 2614–2628 (2022).

  13. Meegan, C. et al. The Fermi gamma-ray burst monitor. Astrophys. J. 702, 791–804 (2009).

    Article  ADS  CAS  Google Scholar 

  14. Barthelmy, S. D. et al. The Burst Alert Telescope (BAT) on the SWIFT MIDEX mission. Space Sci. Rev. 120, 143–164 (2005).

    Article  ADS  Google Scholar 

  15. Xiao, S. et al. The quasi-periodically oscillating precursor of a long gamma-ray burst from a binary neutron star merger. Preprint at https://arxiv.org/abs/2205.02186 (2022).

  16. Band, D. et al. BATSE observations of gamma-ray burst spectra. I. Spectral diversity. Astrophys. J. 413, 281–292 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Amati, L. et al. Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts. Astron. Astrophys. 390, 81–89 (2002).

    Article  ADS  Google Scholar 

  18. Li, L.-X. & Paczyński, B. Transient events from neutron star mergers. Astrophys. J. 507, L59–L62 (1998).

    Article  ADS  Google Scholar 

  19. Metzger, B. D. et al. Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Mon. Not. R. Astron. Soc. 406, 2650–2662 (2010).

    Article  ADS  Google Scholar 

  20. Lü, H.-J., Zhang, B., Liang, E.-W., Zhang, B.-B. & Sakamoto, T. The ‘amplitude’ parameter of gamma-ray bursts and its implications for GRB classification. Mon. Not. R. Astron. Soc. 442, 1922–1929 (2014).

    Article  ADS  Google Scholar 

  21. Zhang, B. The Physics of Gamma-Ray Bursts (Cambridge Univ. Press, 2018).

  22. Kluźniak, W. & Ruderman, M. The central engine of gamma-ray bursters. Astrophys. J. 505, L113–L117 (1998).

    Article  ADS  Google Scholar 

  23. Ruderman, M. A., Tao, L. & Kluźniak, W. A central engine for cosmic gamma-ray burst sources. Astrophys. J. 542, 243–250 (2000).

    Article  ADS  CAS  Google Scholar 

  24. Dai, Z. G., Wang, X. Y., Wu, X. F. & Zhang, B. X-ray flares from postmerger millisecond pulsars. Science 311, 1127–1129 (2006).

    Article  ADS  CAS  Google Scholar 

  25. Toonen, S., Perets, H. B., Igoshev, A. P., Michaely, E. & Zenati, Y. The demographics of neutron star – white dwarf mergers. Rates, delay-time distributions, and progenitors. Astron. Astrophys. 619, A53 (2018).

    Article  ADS  CAS  Google Scholar 

  26. Buikema, A. et al. Sensitivity and performance of the Advanced LIGO detectors in the third observing run. Phys. Rev. D 102, 062003 (2020).

    Article  ADS  CAS  Google Scholar 

  27. Bersanetti, D. et al. Advanced Virgo: status of the detector, latest results and future prospects. Universe 7, 322 (2021).

    Article  ADS  CAS  Google Scholar 

  28. Kagra Collaboration. KAGRA: 2.5 generation interferometric gravitational wave detector. Nat. Astron. 3, 35–40 (2019).

    Article  ADS  Google Scholar 

  29. Amaro-Seoane, P. et al. Laser interferometer space antenna. Preprint at https://arxiv.org/abs/1702.00786 (2017).

  30. Luo, Z., Guo, Z., Jin, G., Wu, Y. & Hu, W. A brief analysis to Taiji: science and technology. Results Phys. 16, 102918 (2020).

    Article  Google Scholar 

  31. Luo, J. et al. TianQin: a space-borne gravitational wave detector. Class. Quantum Gravity 33, 035010 (2016).

    Article  ADS  Google Scholar 

  32. Golenetskii, S. et al. Konus-wind observation of GRB 060614. GRB Coordinates Network, Circular Service, No. 5264 (2006).

  33. Amati, L. et al. On the consistency of peculiar GRBs 060218 and 060614 with the Ep,iEiso correlation. Astron. Astrophys. 463, 913–919 (2007).

    Article  ADS  Google Scholar 

  34. Blanchard, P. K., Berger, E. & Fong, W.-F. The offset and host light distributions of long gamma-ray bursts: a new view from HST observations of Swift bursts. Astrophys. J. 817, 144 (2016).

    Article  ADS  Google Scholar 

  35. von Kienlin, A. et al. The fourth Fermi-GBM gamma-ray burst catalog: a decade of data. Astrophys. J. 893, 46 (2020).

    Article  ADS  Google Scholar 

  36. Scargle, J. D., Norris, J. P., Jackson, B. & Chiang, J. Studies in astronomical time series analysis. VI. Bayesian block representations. Astrophys. J. 764, 167 (2013).

    Article  ADS  Google Scholar 

  37. Vianello, G. et al. The bright and the slow—GRBs 100724B and 160509A with high-energy cutoffs at 100 MeV. Astrophys. J. 864, 163 (2018).

    Article  ADS  Google Scholar 

  38. Zhang, B. B. et al. Transition from fireball to Poynting-flux-dominated outflow in the three-episode GRB 160625B. Nat. Astron. 2, 69–75 (2018).

    Article  ADS  Google Scholar 

  39. Burgess, J. M., Yu, H.-F., Greiner, J. & Mortlock, D. J. Awakening the BALROG: BAyesian Location Reconstruction Of GRBs. Mon. Not. R. Astron. Soc. 476, 1427–1444 (2018).

    Article  ADS  CAS  Google Scholar 

  40. Berlato, F., Greiner, J. & Burgess, J. M. Improved Fermi-GBM GRB localizations using BALROG. Astrophys. J. 873, 60 (2019).

    Article  ADS  CAS  Google Scholar 

  41. Feroz, F. & Hobson, M. P. Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses. Mon. Not. R. Astron. Soc. 384, 449–463 (2008).

    Article  ADS  Google Scholar 

  42. Feroz, F., Hobson, M. P. & Bridges, M. MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398, 1601–1614 (2009).

    Article  ADS  Google Scholar 

  43. Buchner, J. et al. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue. Astron. Astrophys. 564, A125 (2014).

    Article  Google Scholar 

  44. Feroz, F., Hobson, M. P., Cameron, E. & Pettitt, A. N. Importance nested sampling and the MultiNest algorithm. Open J. Astrophys. 2, 10 (2019).

    Article  Google Scholar 

  45. Arnaud, K. A. in Astronomical Data Analysis Software and Systems V, Astronomical Society of the Pacific Conference Series, Vol. 101 (eds Jacoby, G. H. & Barnes, J.) 17–20 (1996).

  46. Lu, R.-J. et al. A comprehensive analysis of Fermi gamma-ray burst data. II. Ep evolution patterns and implications for the observed spectrum–luminosity relations. Astrophys. J. 756, 112 (2012).

    Article  ADS  Google Scholar 

  47. Li, L. et al. “Double-tracking” characteristics of the spectral evolution of GRB 131231A: synchrotron origin? Astrophys. J. 884, 109 (2019).

    Article  ADS  CAS  Google Scholar 

  48. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article  ADS  Google Scholar 

  49. Preece, R. D. et al. The synchrotron shock model confronts a “line of death” in the BATSE gamma-ray burst data. Astrophys. J. 506, L23–L26 (1998).

    Article  ADS  Google Scholar 

  50. Mészáros, P. & Rees, M. J. Steep slopes and preferred breaks in gamma-ray burst spectra: the role of photospheres and Comptonization. Astrophys. J. 530, 292–298 (2000).

    Article  ADS  Google Scholar 

  51. Deng, W. & Zhang, B. Low energy spectral index and Ep evolution of quasi-thermal photosphere emission of gamma-ray bursts. Astrophys. J. 785, 112 (2014).

    Article  ADS  Google Scholar 

  52. Zhang, B. & Mészáros, P. An analysis of gamma-ray burst spectral break models. Astrophys. J. 581, 1236–1247 (2002).

    Article  ADS  Google Scholar 

  53. Uhm, Z. L. & Zhang, B. Fast-cooling synchrotron radiation in a decaying magnetic field and γ-ray burst emission mechanism. Nat. Phys. 10, 351–356 (2014).

    Article  CAS  Google Scholar 

  54. Zhang, B. & Yan, H. The Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model of gamma-ray bursts. Astrophys. J. 726, 90 (2011).

    Article  ADS  Google Scholar 

  55. Yi, T., Liang, E., Qin, Y. & Lu, R. On the spectral lags of the short gamma-ray bursts. Mon. Not. R. Astron. Soc. 367, 1751–1756 (2006).

    Article  ADS  Google Scholar 

  56. Bernardini, M. G. et al. Comparing the spectral lag of short and long gamma-ray bursts and its relation with the luminosity. Mon. Not. R. Astron. Soc. 446, 1129–1138 (2015).

    Article  ADS  CAS  Google Scholar 

  57. Norris, J. P., Marani, G. F. & Bonnell, J. T. Connection between energy-dependent lags and peak luminosity in gamma-ray bursts. Astrophys. J. 534, 248–257 (2000).

    Article  ADS  Google Scholar 

  58. Ukwatta, T. N. et al. Spectral lags and the lag–luminosity relation: an investigation with Swift BAT gamma-ray bursts. Astrophys. J. 711, 1073–1086 (2010).

    Article  ADS  CAS  Google Scholar 

  59. Zhang, B.-B. et al. Unusual central engine activity in the double burst GRB 110709B. Astrophys. J. 748, 132 (2012).

    Article  ADS  Google Scholar 

  60. Shao, L. et al. A new measurement of the spectral lag of gamma-ray bursts and its implications for spectral evolution behaviors. Astrophys. J. 844, 126 (2017).

    Article  ADS  Google Scholar 

  61. Malesani, D. B. et al. GRB 211211A: NOT optical spectroscopy. GRB Coordinates Network, Circular Service, No. 31221 (2021).

  62. Minaev, P. & Pozanenko, A.; GRB IKI FuN. GRB 211211A: redshift estimation and SPI-ACS/INTEGRAL detection. GRB Coordinates Network, Circular Service, No. 31230 (2021).

  63. Levan, A. J. et al. GRB 211211A - Gemini K-band detection. GRB Coordinates Network, Circular Service, No. 31235 (2021).

  64. Zheng, W. & Filippenko, A. V.; KAIT GRB Team. GRB 211211A: KAIT optical afterglow candidate. GRB Coordinates Network, Circular Service, No. 31203 (2021).

  65. Adelman-McCarthy, J. K. et al. The Sixth Data Release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 175, 297–313 (2008).

    Article  ADS  CAS  Google Scholar 

  66. Bloom, J. S., Kulkarni, S. R. & Djorgovski, S. G. The observed offset distribution of gamma-ray bursts from their host galaxies: a robust clue to the nature of the progenitors. Astron. J. 123, 1111–1148 (2002).

    Article  ADS  Google Scholar 

  67. Stalder, B. et al. Observations of the GRB afterglow ATLAS17aeu and its possible association with GW 170104. Astrophys. J. 850, 149 (2017).

    Article  ADS  Google Scholar 

  68. Lien, A. et al. The third Swift Burst Alert Telescope gamma-ray burst catalog. Astrophys. J. 829, 7 (2016).

    Article  ADS  Google Scholar 

  69. Narayana Bhat, P. et al. The third Fermi GBM gamma-ray burst catalog: the first six years. Astrophys. J. Suppl. Ser. 223, 28 (2016).

    Article  ADS  Google Scholar 

  70. Fermi GBM Team. GRB 211211A: Fermi GBM final real-time localization. GRB Coordinates Network, Circular Service, No. 31201 (2021).

  71. Kann, D. A. et al. The afterglows of Swift-era gamma-ray bursts. II. Type I GRB versus type II GRB optical afterglows. Astrophys. J. 734, 96 (2011).

    Article  ADS  Google Scholar 

  72. Berger, E. A short gamma-ray burst “No-host” problem? Investigating large progenitor offsets for short GRBs with optical afterglows. Astrophys. J. 722, 1946–1961 (2010).

    Article  ADS  CAS  Google Scholar 

  73. Hogg, D. W. et al. Counts and colours of faint galaxies in the U and R bands. Mon. Not. R. Astron. Soc. 288, 404–410 (1997).

    Article  ADS  Google Scholar 

  74. Beckwith, S. V. W. et al. The Hubble ultra deep field. Astron. J. 132, 1729–1755 (2006).

    Article  ADS  CAS  Google Scholar 

  75. Fong, W. & Berger, E. The locations of short gamma-ray bursts as evidence for compact object binary progenitors. Astrophys. J. 776, 18 (2013).

    Article  ADS  Google Scholar 

  76. Burrows, D. N. et al. The Swift X-ray telescope. Space Sci. Rev. 120, 165–195 (2005).

    Article  ADS  Google Scholar 

  77. Beardmore, A. P., Evans, P. A., Goad, M. R. & Osborne, J. P.; Swift-XRT Team. GRB 211211A: enhanced Swift-XRT position. GRB Coordinates Network, Circular Service, No. 31205 (2021).

  78. Liang, E.-W., Zhang, B.-B. & Zhang, B. A comprehensive analysis of Swift XRT data. II. Diverse physical origins of the shallow decay segment. Astrophys. J. 670, 565–583 (2007).

    Article  ADS  CAS  Google Scholar 

  79. Xiao, D., Peng, Z.-K, Zhang, B.-B. & Dai, Z.-G. Prompt emission of gamma-ray bursts from the wind of newborn millisecond magnetars: a case study of GRB 160804A. Astrophys. J. 867, 52 (2018).

    Article  ADS  Google Scholar 

  80. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  81. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. Sugiura, N. Further analysts of the data by Akaike’s information criterion and the finite corrections: further analysts of the data by akaike’s. Commun. Stat. Theory Methods 7, 13–26 (1978).

    Article  MATH  Google Scholar 

  83. Zhang, B. et al. Physical processes shaping gamma-ray burst X-ray afterglow light curves: theoretical implications from the Swift X-Ray Telescope observations. Astrophys. J. 642, 354–370 (2006).

    Article  ADS  CAS  Google Scholar 

  84. Nousek, J. A. et al. Evidence for a canonical gamma-ray burst afterglow light curve in the Swift XRT data. Astrophys. J. 642, 389–400 (2006).

    Article  ADS  CAS  Google Scholar 

  85. Kumar, P. & Panaitescu, A. Afterglow emission from naked gamma-ray bursts. Astrophys. J. 541, L51–L54 (2000).

    Article  ADS  Google Scholar 

  86. Dermer, C. D. Curvature effects in gamma-ray burst colliding shells. Astrophys. J. 614, 284–292 (2004).

    Article  ADS  Google Scholar 

  87. Zhang, B.-B., Liang, E.-W. & Zhang, B. A comprehensive analysis of Swift XRT data. I. Apparent spectral evolution of gamma-ray burst X-ray tails. Astrophys. J. 666, 1002–1011 (2007).

    Article  ADS  Google Scholar 

  88. Zhang, B.-B., Zhang, B., Liang, E.-W. & Wang, X.-Y. Curvature effect of a non-power-law spectrum and spectral evolution of GRB X-ray tails. Astrophys. J. 690, L10–L13 (2009).

    Article  ADS  CAS  Google Scholar 

  89. Gompertz, B. P. et al. A minute-long merger-driven gamma-ray burst from fast-cooling synchrotron emission. Nat. Astron. https://doi.org/10.1038/s41550-022-01819-4 (2022).

  90. Dai, Z. G. & Lu, T. γ-ray bursts and afterglows from rotating strange stars and neutron stars. Phys. Rev. Lett. 81, 4301–4304 (1998).

    Article  ADS  CAS  Google Scholar 

  91. Zhang, B. & Mészáros, P. Gamma-ray burst afterglow with continuous energy injection: signature of a highly magnetized millisecond pulsar. Astrophys. J. 552, L35–L38 (2001).

    Article  ADS  Google Scholar 

  92. Rees, M. J. & Mészáros, P. Refreshed shocks and afterglow longevity in gamma-ray bursts. Astrophys. J. 496, L1–L4 (1998).

    Article  ADS  Google Scholar 

  93. Sari, R. & Mészáros, P. Impulsive and varying injection in gamma-ray burst afterglows. Astrophys. J. 535, L33–L37 (2000).

    Article  ADS  CAS  Google Scholar 

  94. Troja, E. et al. Swift observations of GRB 070110: an extraordinary X-ray afterglow powered by the central engine. Astrophys. J. 665, 599–607 (2007).

    Article  ADS  Google Scholar 

  95. Lyons, N. et al. Can X-ray emission powered by a spinning-down magnetar explain some gamma-ray burst light-curve features? Mon. Not. R. Astron. Soc. 402, 705–712 (2010).

    Article  ADS  Google Scholar 

  96. Racusin, J. L. et al. Jet breaks and energetics of Swift gamma-ray burst X-ray afterglows. Astrophys. J. 698, 43–74 (2009).

    Article  ADS  Google Scholar 

  97. Roming, P. W. A. et al. The Swift ultra-violet/optical telescope. Space Sci. Rev. 120, 95–142 (2005).

    Article  ADS  Google Scholar 

  98. Belles, A. & D’Ai, A.; Swift/UVOT Team. GRB 211211A: Swift/UVOT detection. GRB Coordinates Network, Circular Service, No. 31222 (2021).

  99. Ito, N. et al. GRB 211211A: MITSuME Akeno optical observation. GRB Coordinates Network, Circular Service, No. 31217 (2021).

  100. Kumar, H. et al. GRB 211211A: HCT and GIT optical follow up observations. GRB Coordinates Network, Circular Service, No. 31227 (2021).

  101. Strausbaugh, R. & Cucchiara, A. GRB 211211A: LCO optical observations. GRB Coordinates Network, Circular Service, No. 31214 (2021).

  102. Mao, J., Xin, Y.-X. & Bai, J.-M. GRB 211211A: GMG upper limit. GRB Coordinates Network, Circular Service, No. 31232 (2021).

  103. Gupta, R. et al. GRB 211211A: observations with the 3.6m Devasthal Optical Telescope. GRB Coordinates Network, Circular Service, No. 31299 (2021).

  104. Pankov, N. et al. GRB 211211A: AbAO optical observations. GRB Coordinates Network, Circular Service, No. 31233 (2021).

  105. Moskvitin, A. et al. GRB 211211A: SAO RAS optical observations. GRB Coordinates Network, Circular Service, No. 31234 (2021).

  106. D’Avanzo, P. et al. GRB 211211A: TNG NIR observations. GRB Coordinates Network, Circular Service, No. 31242 (2021).

  107. Gal-Yam, A. et al. A novel explosive process is required for the γ-ray burst GRB 060614. Nature 444, 1053–1055 (2006).

    Article  ADS  CAS  Google Scholar 

  108. Fynbo, J. P. U. et al. No supernovae associated with two long-duration γ-ray bursts. Nature 444, 1047–1049 (2006).

    Article  ADS  CAS  Google Scholar 

  109. Galama, T. J. et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 395, 670–672 (1998).

    Article  ADS  CAS  Google Scholar 

  110. Reeves, J. N. et al. The signature of supernova ejecta in the X-ray afterglow of the γ-ray burst 011211. Nature 416, 512–515 (2002).

    Article  ADS  CAS  Google Scholar 

  111. Hjorth, J. et al. A very energetic supernova associated with the γ-ray burst of 29 March 2003. Nature 423, 847–850 (2003).

    Article  ADS  CAS  Google Scholar 

  112. Clocchiatti, A., Suntzeff, N. B., Covarrubias, R. & Candia, P. The ultimate light curve of SN 1998bw/GRB 980425. Astron. J. 141, 163 (2011).

    Article  ADS  Google Scholar 

  113. Cano, Z. A new method for estimating the bolometric properties of Ibc supernovae. Mon. Not. R. Astron. Soc. 434, 1098–1116 (2013).

    Article  ADS  CAS  Google Scholar 

  114. Ryan, G., van Eerten, H., Piro, L. & Troja, E. Gamma-ray burst afterglows in the multimessenger era: numerical models and closure relations. Astrophys. J. 896, 166 (2020).

    Article  ADS  CAS  Google Scholar 

  115. Fitzpatrick, E. L. Correcting for the effects of interstellar extinction. Publ. Astron. Soc. Pac. 111, 63–75 (1999).

    Article  ADS  Google Scholar 

  116. Astropy Collaboration et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Article  Google Scholar 

  117. Kasen, D., Badnell, N. R. & Barnes, J. Opacities and spectra of the r-process ejecta from neutron star mergers. Astrophys. J. 774, 25 (2013).

    Article  ADS  CAS  Google Scholar 

  118. Wang, X.-G. et al. How bad or good are the external forward shock afterglow models of gamma-ray bursts? Astrophys. J. Suppl. Ser. 219, 9 (2015).

    Article  ADS  Google Scholar 

  119. Rosswog, S. Fallback accretion in the aftermath of a compact binary merger. Mon. Not. R. Astron. Soc. 376, L48–L51 (2007).

    Article  ADS  Google Scholar 

  120. Lu, W. & Quataert, E. Late-time accretion in neutron star mergers: implications for short gamma-ray bursts and kilonovae. Preprint at https://arxiv.org/abs/2208.04293 (2022).

  121. van Putten, M. H. P. M., Lee, G. M., Della Valle, M., Amati, L. & Levinson, A. On the origin of short GRBs with extended emission and long GRBs without associated SN. Mon. Not. R. Astron. Soc. 444, L58–L62 (2014).

    Article  ADS  Google Scholar 

  122. van Putten, M. H. P. M. Discovery of black hole spindown in the BATSE catalogue of long GRBs. Prog. Theor. Phys. 127, 331–354 (2012).

    Article  ADS  MATH  Google Scholar 

  123. Metzger, B. D., Quataert, E. & Thompson, T. A. Short-duration gamma-ray bursts with extended emission from protomagnetar spin-down. Mon. Not. R. Astron. Soc. 385, 1455–1460 (2008).

    Article  ADS  CAS  Google Scholar 

  124. Shapiro, S. L., Teukolsky, S. A. & Lightman, A. P. Black holes, white dwarfs, and neutron stars: the physics of compact objects. Phys. Today 36, 89 (1983).

    Article  Google Scholar 

  125. Xiao, D. & Dai, Z.-G. Determining the efficiency of converting magnetar spindown energy into gamma-ray burst X-ray afterglow emission and its possible implications. Astrophys. J. 878, 62 (2019).

    Article  ADS  CAS  Google Scholar 

  126. Xiao, D., Zhang, B.-B. & Dai, Z.-G. On the properties of a newborn magnetar powering the X-ray transient CDF-S XT2. Astrophys. J. Lett. 879, L7 (2019).

    Article  ADS  CAS  Google Scholar 

  127. Fryer, C., Benz, W., Herant, M. & Colgate, S. A. What can the accretion-induced collapse of white dwarfs really explain? Astrophys. J. 516, 892–899 (1999).

    Article  ADS  CAS  Google Scholar 

  128. Paczynski, B. Gamma-ray bursters at cosmological distances. Astrophys. J. 308, L43–L46 (1986).

    Article  ADS  CAS  Google Scholar 

  129. Eichler, D., Livio, M., Piran, T. & Schramm, D. N. Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars. Nature 340, 126–128 (1989).

    Article  ADS  Google Scholar 

  130. Paczynski, B. Cosmological gamma-ray bursts. Acta Astron. 41, 257–267 (1991).

    ADS  CAS  Google Scholar 

  131. Rueda, J. A. et al. GRB 170817A-GW170817-AT 2017gfo and the observations of NS-NS, NS-WD and WD-WD mergers. J. Cosmol. Astropart. Phys. 2018, 006 (2018).

    Article  Google Scholar 

  132. Siegel, D. M., Barnes, J. & Metzger, B. D. Collapsars as a major source of r-process elements. Nature 569, 241–244 (2019).

    Article  ADS  CAS  Google Scholar 

  133. Waxman, E., Ofek, E. O. & Kushnir, D. Strong NIR emission following the long duration GRB 211211A: Dust heating as an alternative to a kilonova. Preprint at https://arxiv.org/abs/2206.10710 (2022).

Download references

Acknowledgements

This work is supported by the National Key Research and Development Programs of China (2018YFA0404204, 2018YFA0404602, 2022YFF0711404), the National Natural Science Foundation of China (grant nos. 11833003, U2038105, 12121003, 11922301, 12041306 and 12103089), the science research grants from the China Manned Space Project with no. CMS-CSST-2021-B11, the Natural Science Foundation of Jiangsu Province (grant no. BK20211000) and the Program for Innovative Talents, Entrepreneur in Jiangsu. S.A. and B.Z. acknowledge support from the Top Tier Doctoral Graduate Research Assistantship (TTDGRA) and Nevada Center for Astrophysics at the University of Nevada, Las Vegas. We acknowledge the use of public data from the Fermi Science Support Center, the Swift Science Data Centre and GCN circulars reported by several facilities. We thank X. Liu, Y.-Z. Meng and Z.-K. Peng for helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

B.-B.Z. and J.Y. initiated the study. B.-B.Z., B.Z., J.Y. and S.A. coordinated the scientific investigations of the event. J.Y. processed and analysed the Fermi/GBM and Swift data. J.Y. and Z.-K.L. calculated the spectral lags. J.Y., X.I.W. and H.-J.L. calculated the amplitude parameter. J.Y., Y.-H.Yang and Y.-H.Yin fitted the Amati relation. J.Y. and Y.L. contributed to the information about the host galaxy. J.Y. contributed to the afterglow analysis and modelling. S.A. provided the engine-fed kilonova model. J.Y. and S.A. performed theoretical modelling of the engine-fed kilonova. J.Y. and S.A. contributed to the magnetic-bubble and spin-down models. B.Z. and S.A. developed the WD–NS merger scenario. B.Z., S.A. and J.Y. investigated other progenitor models. J.Y., B.-B.Z., B.Z. and S.A. wrote the manuscript, with contributions from all authors.

Corresponding authors

Correspondence to Bin-Bin Zhang or Bing Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Massimo Della Valle and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 The multiwavelength light curves of prompt emissions and spectral lags.

a, The scaled multiwavelength light curves obtained from Fermi/GBM (blue) and Swift/BAT (red) data for GRB 211211A and Swift/BAT (black) data for GRB 060614. For comparison, we reduce the trigger time of GRB 060614 by 5 s. bd, The spectral lags between each of the higher-energy bands and the lowest-energy band calculated for the main emission, extended emission and whole burst of GRB 211211A. The lags in blue and red are derived from Fermi/GBM and Swift/BAT data, respectively. The horizontal black lines and grey shaded areas in b and c show the spectral lags and their uncertainties of GRB 060614, respectively. All error bars on data points represent their 1σ confidence level.

Extended Data Fig. 2 The T90 distributions.

a, The T90 distribution (grey histogram) of the short GRB (T90 < 2 s) sample from the fourth Fermi/GBM catalogue35 fit with a single log-normal distribution (solid black line). GRB 211211A (with 13-s main emission) and GRB 060614 (with 6-s main emission) are highlighted in red and blue, respectively. b, The T90 distribution (grey histogram) of the whole GRB sample from the fourth Fermi/GBM catalogue fit with a two-component log-normal mixture model (solid black line). The two components responsible for short and long GRB populations are shown with grey dashed and dotted lines, respectively. GRB 211211A (with 13-s main emission) and GRB 060614 (with 6-s main emission) are highlighted in red and blue, respectively.

Extended Data Fig. 3 The α, Ep and flux F correlation diagrams.

ad, The linear fits to α–logF, logEp–logF, logEpα and logEp,z–logEγ,iso relations during the main emission phase (blue) and the extended emission phase (magenta). The solid and dashed lines show the best-fit correlations and 3σ error bands, respectively. All error bars on data points represent their 1σ confidence level. e,f, The distributions of the best-fit α and Ep obtained from time-resolved spectral fits.

Extended Data Fig. 4 The X-ray afterglow of GRB 211211A fit with the SBPL function.

The X-ray afterglow in PC mode is shown with grey error bars. The two-segment and three-segment SBPL models are represented by blue and red lines, respectively. On the basis of the statistics (stat/dof, BIC and AICc), the data favours the three-segment SBPL model more than the two-segment SBPL model. The differences in BIC and AICc between the two-segment and three-segment SBPL models are ΔBIC = 2.54 and ΔAICc = 5.42, respectively. Such ‘strength of evidence’ (that is, ΔBIC and ΔAICc) also positively supports the three-segment SBPL model.

Extended Data Fig. 5 The fit of the afterglow plus engine-fed kilonova model to multiwavelength data.

a, Corner plot of the posterior probability distributions of the parameters. The red error bars represent the 1σ uncertainties. b, Afterglow-subtracted observations and best-fitting engine-fed kilonova model. The detections and upper limits of the afterglow-subtracted observations are shown with solid circles and downward arrows, respectively. The best-fit models in different bands are presented with solid lines.

Extended Data Table 1 Spectral fitting results and corresponding energy flux in each time interval of GRB 211211A
Extended Data Table 2 The best-fit parameters of linear models for α–logF, logEp–logF, logEpα and logEp,z–logEγ,iso correlations
Extended Data Table 3 The temporal and spectral profiles of X-ray afterglows
Extended Data Table 4 Ultraviolet, optical and near-infrared observations of GRB 211211A
Extended Data Table 5 The best-fit parameters of the afterglow and engine-fed kilonova models

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Ai, S., Zhang, BB. et al. A long-duration gamma-ray burst with a peculiar origin. Nature 612, 232–235 (2022). https://doi.org/10.1038/s41586-022-05403-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05403-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing