Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A long-duration gamma-ray burst of dynamical origin from the nucleus of an ancient galaxy

Abstract

The majority of long-duration (>2 s) gamma-ray bursts (GRBs) arise from the collapse of massive stars, with a small proportion created from the merger of compact objects. Most of these systems form via standard stellar evolution pathways. However, a fraction of GRBs may result from dynamical interactions in dense environments. These channels could also contribute substantially to the samples of compact object mergers detected as gravitational wave sources. Here we report the case of GRB 191019A, a long GRB (a duration of T90 = 64.4 ± 4.5 s), which we pinpoint close (100 pc projected) to the nucleus of an ancient (>1 Gyr old) host galaxy at z = 0.248. The lack of evidence for star formation and deep limits on any supernova emission disfavour a massive star origin. The most likely route for progenitor formation is via dynamical interactions in the dense nucleus of the host. The progenitor, in this case, could be a compact object merger. These may form in dense nuclear clusters or originate in a gaseous disc around the supermassive black hole. Identifying, to the best of our knowledge, a first example of a dynamically produced GRB demonstrates the role that such bursts may have in probing dense environments and constraining dynamical fractions in gravitational wave populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The gamma-ray properties of GRB 191019A.
Fig. 2: Optical images of the afterglow of GRB 191019A and its host galaxy.
Fig. 3: The optical spectrum of the host galaxy of GRB 191019A as observed with the NOT.
Fig. 4: Comparison between the upper limits obtained from our targeted observations of GRB 191019A and the expectations of the light curve from supernovae or TDEs.

Similar content being viewed by others

Data availability

The majority of data generated or analysed during this study are included in this published article (and its supplementary information files). Gamma-ray and X-ray data from Swift may be downloaded from the UK Swift Science Data Centre at https://www.swift.ac.uk/. HST data are associated with programmes 16051 and 16458 and can be downloaded from https://archive.stsci.edu. Gemini data are associated with programmes GS-2019B-DD-106 and GS-2019B-FT-209 and can be retrieved from https://archive.gemini.edu. NOT data can be obtained via https://www.not.iac.es/observing/forms/fitsarchive/.

Code availability

The Prospector stellar population modelling code is available at https://github.com/bd-j/prospector. The IRAF and Python scripts necessary for HST data reduction can be obtained via astroconda and IRAF (including the relevant Gemini IRAF packages) from http://www.gemini.edu/observing/phase-iii/understanding-and-processing-data/data-processing-software/gemini-iraf-general.

References

  1. Grindlay, J., Portegies Zwart, S. & McMillan, S. Short gamma-ray bursts from binary neutron star mergers in globular clusters. Nat. Phys. 2, 116–119 (2006).

    Article  Google Scholar 

  2. O’Leary, R. M., Meiron, Y. & Kocsis, B. Dynamical formation signatures of black hole binaries in the first detected mergers by LIGO. Astrophys. J. Lett. 824, L12 (2016).

    Article  ADS  Google Scholar 

  3. Fragione, G., Grishin, E., Leigh, N. W. C., Perets, H. B. & Perna, R. Black hole and neutron star mergers in galactic nuclei. Mon. Not. R. Astron. Soc. 488, 47–63 (2019).

    Article  ADS  Google Scholar 

  4. McKernan, B., Ford, K. E. S. & O’Shaughnessy, R. Black hole, neutron star, and white dwarf merger rates in AGN discs. Mon. Not. R. Astron. Soc. 498, 4088–4094 (2020).

    Article  ADS  Google Scholar 

  5. Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

    Article  ADS  Google Scholar 

  6. Arcavi, I. et al. Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger. Nature 551, 64–66 (2017).

    Article  ADS  Google Scholar 

  7. Chornock, R. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. IV. Detection of near-infrared signatures of r-process nucleosynthesis with Gemini-South. Astrophys. J. Lett. 848, L19 (2017).

    Article  ADS  Google Scholar 

  8. Pian, E. et al. Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 551, 67–70 (2017).

    Article  ADS  Google Scholar 

  9. Smartt, S. J. et al. A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 551, 75–79 (2017).

    Article  ADS  Google Scholar 

  10. Tanvir, N. R. et al. The emergence of a lanthanide-rich kilonova following the merger of two neutron stars. Astrophys. J. Lett. 848, L27 (2017).

    Article  ADS  Google Scholar 

  11. Galama, T. J. et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 395, 670–672 (1998).

    Article  ADS  Google Scholar 

  12. Hjorth, J. et al. A very energetic supernova associated with the γ-ray burst of 29 March 2003. Nature 423, 847–850 (2003).

    Article  ADS  Google Scholar 

  13. Levan, A. et al. Gamma-ray burst progenitors. Space Sci. Rev. 202, 33–78 (2016).

    Article  ADS  Google Scholar 

  14. Rastinejad, J. C. et al. A kilonova following a long-duration gamma-ray burst at 350 Mpc. Nature 612, 223–227 (2022).

    Article  ADS  Google Scholar 

  15. Troja, E. et al. A nearby long gamma-ray burst from a merger of compact objects. Nature 612, 228–231 (2022).

    Article  ADS  Google Scholar 

  16. Yang, J. et al. A long-duration gamma-ray burst with a peculiar origin. Nature 612, 232–235 (2022).

    Article  ADS  Google Scholar 

  17. Simpson, K. K. et al. GRB 191019A: Swift detection of a burst. GRB Coord. Netw. 26031, 1 (2019).

    Google Scholar 

  18. Krimm, H. A. et al. GRB 191019A: Swift-BAT refined analysis. GRB Coord. Netw. 26046, 1 (2019).

    Google Scholar 

  19. Evans, P. A. et al. GRB 191019A: Swift-XRT observations. GRB Coord. Netw. 26034, 1 (2019).

    Google Scholar 

  20. Perley, D. A. et al. GRB 191019A: NOT optical afterglow and host association confirmation. GRB Coord. Netw. 26062, 1 (2019).

    Google Scholar 

  21. Perley, D. A. et al. The Zwicky Transient Facility Bright Transient Survey. II. A public statistical sample for exploring supernova demographics. Astrophys. J. 904, 35 (2020).

    Article  ADS  Google Scholar 

  22. Nicholl, M. et al. Systematic light-curve modelling of TDEs: statistical differences between the spectroscopic classes. Mon. Not. R. Astron. Soc. 515, 5604–5616 (2022).

    Article  ADS  Google Scholar 

  23. Hammerstein, E. et al. The final season reimagined: 30 tidal disruption events from the ZTF-I survey. Astrophys. J. 942, 9 (2023).

    Article  ADS  Google Scholar 

  24. Tanvir, N. R. et al. The emergence of a lanthanide-rich kilonova following the merger of two neutron stars. Astrophys. J. Lett. 848, L27 (2017).

    Article  ADS  Google Scholar 

  25. Villar, V. A. et al. The combined ultraviolet, optical, and near-infrared light curves of the kilonova associated with the binary neutron star merger GW170817: unified data set, analytic models, and physical implications. Astrophys. J. Lett. 851, L21 (2017).

    Article  ADS  Google Scholar 

  26. Jin, Z.-P. et al. The light curve of the macronova associated with the long-short burst GRB 060614. Astrophys. J. Lett. 811, L22 (2015).

    Article  ADS  Google Scholar 

  27. Yang, B. et al. A possible macronova in the late afterglow of the long-short burst GRB 060614. Nat. Commun. 6, 7323 (2015).

    Article  ADS  Google Scholar 

  28. Kormendy, J. & Ho, L. C. Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013).

    Article  ADS  Google Scholar 

  29. Fong, W.-f. et al. Short GRB host galaxies. I. Photometric and spectroscopic catalogs, host associations, and galactocentric offsets. Astrophys. J. 940, 56 (2022).

    Article  ADS  Google Scholar 

  30. Ye, C. S. et al. On the rate of neutron star binary mergers from globular clusters. Astrophys. J. Lett. 888, L10 (2020).

    Article  ADS  Google Scholar 

  31. Antonini, F. & Rasio, F. A. Merging black hole binaries in galactic nuclei: implications for advanced-LIGO detections. Astrophys. J. 831, 187 (2016).

    Article  ADS  Google Scholar 

  32. Tagawa, H., Haiman, Z. & Kocsis, B. Formation and evolution of compact-object binaries in AGN disks. Astrophys. J. 898, 25 (2020).

    Article  ADS  Google Scholar 

  33. French, K. D., Arcavi, I. & Zabludoff, A. The post-starburst evolution of tidal disruption event host galaxies. Astrophys. J. 835, 176 (2017).

    Article  ADS  Google Scholar 

  34. Stone, N. C. & Metzger, B. D. Rates of stellar tidal disruption as probes of the supermassive black hole mass function. Mon. Not. R. Astron. Soc. 455, 859–883 (2016).

    Article  ADS  Google Scholar 

  35. Mandel, I. & Broekgaarden, F. S. Rates of compact object coalescences. Living Rev. Relativ. 25, 1 (2022).

    Article  ADS  Google Scholar 

  36. Gompertz, B. P. et al. The case for a minute-long merger-driven gamma-ray burst from fast-cooling synchrotron emission. Nat. Astron. 7, 67–79 (2023).

    Article  ADS  Google Scholar 

  37. Perley, D. A. et al. GRB 080503: implications of a naked short gamma-ray burst dominated by extended emission. Astrophys. J. 696, 1871–1885 (2009).

    Article  ADS  Google Scholar 

  38. Bucciantini, N., Metzger, B. D., Thompson, T. A. & Quataert, E. Short gamma-ray bursts with extended emission from magnetar birth: jet formation and collimation. Mon. Not. R. Astron. Soc. 419, 1537–1545 (2012).

    Article  ADS  Google Scholar 

  39. Lu, W. & Quataert, E. Late-time accretion in neutron star mergers: implications for short gamma-ray bursts and kilonovae. Mon. Not. R. Astron. Soc. 522, 5848–5861 (2023).

    Article  ADS  Google Scholar 

  40. King, A., Olsson, E. & Davies, M. B. A new type of long gamma-ray burst. Mon. Not. R. Astron. Soc. 374, L34–L36 (2007).

    Article  ADS  Google Scholar 

  41. McBrien, O. R. et al. SN2018kzr: a rapidly declining transient from the destruction of a white dwarf. Astrophys. J. Lett. 885, L23 (2019).

    Article  ADS  Google Scholar 

  42. Gillanders, J. H., Sim, S. A. & Smartt, S. J. AT2018kzr: the merger of an oxygen-neon white dwarf and a neutron star or black hole. Mon. Not. R. Astron. Soc. 497, 246–262 (2020).

    Article  ADS  Google Scholar 

  43. Perna, R., Lazzati, D. & Cantiello, M. Electromagnetic signatures of relativistic explosions in the disks of active galactic nuclei. Astrophys. J. Lett. 906, L7 (2021).

    Article  ADS  Google Scholar 

  44. Zhu, J.-P., Zhang, B., Yu, Y.-W. & Gao, H. Neutron star mergers in active galactic nucleus accretion disks: cocoon and ejecta shock breakouts. Astrophys. J. Lett. 906, L11 (2021).

    Article  ADS  Google Scholar 

  45. Lazzati, D., Soares, G. & Perna, R. Prompt emission of γ-ray bursts in the high-density environment of active galactic nucleus accretion disks. Astrophys. J. Lett. 938, L18 (2022).

    Article  ADS  Google Scholar 

  46. Fynbo, J. P. U. et al. No supernovae associated with two long-duration γ-ray bursts. Nature 444, 1047–1049 (2006).

    Article  ADS  Google Scholar 

  47. Gal-Yam, A. et al. A novel explosive process is required for the γ-ray burst GRB 060614. Nature 444, 1053–1055 (2006).

    Article  ADS  Google Scholar 

  48. Gehrels, N. et al. A new γ-ray burst classification scheme from GRB060614. Nature 444, 1044–1046 (2006).

    Article  ADS  Google Scholar 

  49. MichałowskI, M. J. et al. The second-closest gamma-ray burst: sub-luminous GRB 111005A with no supernova in a super-solar metallicity environment. Astron. Astrophys. 616, A169 (2018).

    Article  Google Scholar 

  50. Leśniewska, A. et al. The interstellar medium in the environment of the supernova-less long-duration GRB 111005A. Astrophys. J. Suppl. Ser. 259, 67 (2022).

    Article  ADS  Google Scholar 

  51. Rossi, A. et al. A quiescent galaxy at the position of the long GRB 050219A. Astron. Astrophys. 572, A47 (2014).

    Article  Google Scholar 

  52. Fruchter, A. S. et al. Long γ-ray bursts and core-collapse supernovae have different environments. Nature 441, 463–468 (2006).

    Article  ADS  Google Scholar 

  53. Fragione, G., Kocsis, B., Rasio, F. A. & Silk, J. Repeated mergers, mass-gap black holes, and formation of intermediate-mass black holes in dense massive star clusters. Astrophys. J. 927, 231 (2022).

    Article  ADS  Google Scholar 

  54. Evans, P. A. et al. An online repository of Swift/XRT light curves of γ-ray bursts. Astron. Astrophys. 469, 379–385 (2007).

    Article  ADS  Google Scholar 

  55. Evans, P. A. et al. Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs. Mon. Not. R. Astron. Soc. 397, 1177–1201 (2009).

    Article  ADS  Google Scholar 

  56. HEAsoft: unified release of FTOOLS and XANADU (Nasa High Energy Astrophysics Science Archive Research Center (Heasarc), 2014).

  57. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article  Google Scholar 

  58. Tonry, J. & Davis, M. A survey of galaxy redshifts. I. Data reduction techniques. Astron. J. 84, 1511–1525 (1979).

    Article  ADS  Google Scholar 

  59. Barthelmy, S. D. et al. An origin for short γ-ray bursts unassociated with current star formation. Nature 438, 994–996 (2005).

    Article  ADS  Google Scholar 

  60. Wilms, J., Allen, A. & McCray, R. On the absorption of X-rays in the interstellar medium. Astrophys. J. 542, 914–924 (2000).

    Article  ADS  Google Scholar 

  61. Willingale, R., Starling, R. L. C., Beardmore, A. P., Tanvir, N. R. & O’Brien, P. T. Calibration of X-ray absorption in our galaxy. Mon. Not. R. Astron. Soc. 431, 394–404 (2013).

    Article  ADS  Google Scholar 

  62. Poole, T. S. et al. Photometric calibration of the Swift ultraviolet/optical telescope. Mon. Not. R. Astron. Soc. 383, 627–645 (2007).

    Article  ADS  Google Scholar 

  63. Breeveld, A. A. et al. Further calibration of the Swift ultraviolet/optical telescope. Mon. Not. R. Astron. Soc. 406, 1687–1700 (2010).

    ADS  Google Scholar 

  64. Alard, C. & Lupton, R. H. A method for optimal image subtraction. Astrophys. J. 503, 325–331 (1998).

    Article  ADS  Google Scholar 

  65. Bloom, J. S., Kulkarni, S. R. & Djorgovski, S. G. The observed offset distribution of gamma-ray bursts from their host galaxies: a robust clue to the nature of the progenitors. Astron. J. 123, 1111–1148 (2002).

    Article  ADS  Google Scholar 

  66. Belczynski, K. et al. A study of compact object mergers as short gamma-ray burst progenitors. Astrophys. J. 648, 1110–1116 (2006).

    Article  ADS  Google Scholar 

  67. Church, R. P., Levan, A. J., Davies, M. B. & Tanvir, N. Implications for the origin of short gamma-ray bursts from their observed positions around their host galaxies. Mon. Not. R. Astron. Soc. 413, 2004–2014 (2011).

    Article  ADS  Google Scholar 

  68. Wiggins, B. K. et al. The location and environments of neutron star mergers in an evolving universe. Astrophys. J. 865, 27 (2018).

    Article  ADS  Google Scholar 

  69. Blanchard, P. K., Berger, E. & Fong, W.-f. The offset and host light distributions of long gamma-ray bursts: a new view from HST observations of Swift bursts. Astrophys. J. 817, 144 (2016).

    Article  ADS  Google Scholar 

  70. Lyman, J. D. et al. Hubble Space Telescope observations of the host galaxies and environments of calcium-rich supernovae. Mon. Not. R. Astron. Soc. 458, 1768–1777 (2016).

    Article  ADS  Google Scholar 

  71. Smith, M. W. L. et al. The Herschel Reference Survey: dust in early-type galaxies and across the Hubble Sequence. Astrophys. J. 748, 123 (2012).

    Article  ADS  Google Scholar 

  72. Holoien, T. W. S. et al. ASASSN-14ae: a tidal disruption event at 200 Mpc. Mon. Not. R. Astron. Soc. 445, 3263–3277 (2014).

    Article  ADS  Google Scholar 

  73. Blagorodnova, N. et al. iPTF16fnl: a faint and fast tidal disruption event in an E+A galaxy. Astrophys. J. 844, 46 (2017).

    Article  ADS  Google Scholar 

  74. Law-Smith, J., Ramirez-Ruiz, E., Ellison, S. L. & Foley, R. J. Tidal disruption event host galaxies in the context of the local galaxy population. Astrophys. J. 850, 22 (2017).

    Article  ADS  Google Scholar 

  75. Evans, P. A. et al. Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs. Mon. Not. R. Astron. Soc. 397, 1177–1201 (2009).

    Article  ADS  Google Scholar 

  76. Schulze, S. et al. GRB 120422A/SN 2012bz: bridging the gap between low- and high-luminosity gamma-ray bursts. Astron. Astrophys. 566, A102 (2014).

    Article  Google Scholar 

  77. Gompertz, B. P., Levan, A. J. & Tanvir, N. R. A search for neutron star-black hole binary mergers in the short gamma-ray burst population. Astrophys. J. 895, 58 (2020).

    Article  ADS  Google Scholar 

  78. Zafar, T. et al. VLT/X-shooter GRBs: individual extinction curves of star-forming regions. Mon. Not. R. Astron. Soc. 479, 1542–1554 (2018).

    Article  ADS  Google Scholar 

  79. Conselice, C. J. The relationship between stellar light distributions of galaxies and their formation histories. Astrophys. J. Suppl. Ser. 147, 1–28 (2003).

    Article  ADS  Google Scholar 

  80. Leja, J., Johnson, B. D., Conroy, C., van Dokkum, P. G. & Byler, N. Deriving physical properties from broadband photometry with Prospector: description of the model and a demonstration of its accuracy using 129 galaxies in the local universe. Astrophys. J. 837, 170 (2017).

    Article  ADS  Google Scholar 

  81. Johnson, B. D., Leja, J., Conroy, C. & Speagle, J. S. Stellar population inference with Prospector. Astrophys. J. Suppl. Ser. 254, 22 (2021).

    Article  ADS  Google Scholar 

  82. Speagle, J. S. dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).

    Article  ADS  Google Scholar 

  83. Conroy, C., Gunn, J. E. & White, M. The propagation of uncertainties in stellar population synthesis modeling. I. The relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies. Astrophys. J. 699, 486–506 (2009).

    Article  ADS  Google Scholar 

  84. Conroy, C. & Gunn, J. E. The propagation of uncertainties in stellar population synthesis modeling. III. Model calibration, comparison, and evaluation. Astrophys. J. 712, 833–857 (2010).

    Article  ADS  Google Scholar 

  85. Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245 (1989).

    Article  ADS  Google Scholar 

  86. Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).

    Article  ADS  Google Scholar 

  87. Gallazzi, A., Charlot, S., Brinchmann, J., White, S. D. M. & Tremonti, C. A. The ages and metallicities of galaxies in the local universe. Mon. Not. R. Astron. Soc. 362, 41–58 (2005).

    Article  ADS  Google Scholar 

  88. Price, S. H. et al. Direct measurements of dust attenuation in z ~1.5 star-forming galaxies from 3D-HST: implications for dust geometry and star formation rates. Astrophys. J. 788, 86 (2014).

    Article  ADS  Google Scholar 

  89. Leja, J. et al. An older, more quiescent universe from panchromatic SED fitting of the 3D-HST survey. Astrophys. J. 877, 140 (2019).

    Article  ADS  Google Scholar 

  90. Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    Article  ADS  Google Scholar 

  91. Cappellari, M. Full spectrum fitting with photometry in ppxf: non-parametric star formation history, metallicity and the quenching boundary from 3200 LEGA-C galaxies at redshift z ≈ 0.8. Preprint at https://doi.org/10.48550/arXiv.2208.14974 (2022).

  92. Inkenhaag, A., Jonker, P. G., Cannizzaro, G., Mata Sánchez, D. & Saxton, R. D. Host galaxy line diagnostics for the candidate tidal disruption events XMMSL1 J111527.3+180638 and PTF09axc. Mon. Not. R. Astron. Soc. 507, 6196–6204 (2021).

    Article  ADS  Google Scholar 

  93. Perley, D. A. et al. A population of massive, luminous galaxies hosting heavily dust-obscured gamma-ray bursts: implications for the use of GRBs as tracers of cosmic star formation. Astrophys. J. 778, 128 (2013).

    Article  ADS  Google Scholar 

  94. Nugent, A. E. et al. Short GRB host galaxies. II. A legacy sample of redshifts, stellar population properties, and implications for their neutron star merger origins. Astrophys. J. 940, 57 (2022).

    Article  ADS  Google Scholar 

  95. Lien, A. et al. The third Swift Burst Alert Telescope gamma-ray burst catalog. Astrophys. J. 829, 7 (2016).

    Article  ADS  Google Scholar 

  96. Clocchiatti, A., Suntzeff, N. B., Covarrubias, R. & Candia, P. The ultimate light curve of SN 1998bw/GRB 980425. Astron. J. 141, 163 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.J.L., D.B.M. and N.R.T. are supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 725246). D.B.M. also acknowledges research grant 19054 from VILLUM FONDEN. M.N. and B.P.G. are supported by ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 948381). M.N. acknowledges a Turing Fellowship. The Fong Group at Northwestern acknowledges support by the National Science Foundation under grant nos. AST-1814782 and AST-1909358 and CAREER grant no. AST-2047919. W.F. gratefully acknowledges support by the David and Lucile Packard Foundation. K.E.H. acknowledges support from the Carlsberg Foundation Reintegration Fellowship Grant CF21-0103. J.H. was supported by a VILLUM FONDEN Investigator grant (project number 16599). G.L. is supported by the UK Science Technology and Facilities Council grant ST/S000453/1. A.I. acknowledges the research programme Athena with project number 184.034.002, which is financed by the Dutch Research Council (NWO). K.B. was supported by STScI HST General Observer Programmes 16548 and 16051 through a grant from STScI under National Aeronautics and Space Administration (NASA) contract NAS5-26555. The Cosmic Dawn Center is funded by the Danish National Research Foundation under grant no. 140. G.F. acknowledges support from NASA Grant 80NSSC21K1722 and NSF Grant AST-2108624 at Northwestern University. I.M. acknowledges support from the Australian Research Council through the Centre of Excellence for Gravitational Wave Discovery (OzGrav), project number CE17010004, and through Future Fellowship FT190100574. This work is partly based on observations made with the Nordic Optical Telescope, under programmes 58-502 and 61-503, owned in collaboration by the University of Turku and Aarhus University, and operated jointly by Aarhus University, the University of Turku and the University of Oslo, representing Denmark, Finland and Norway, the University of Iceland and Stockholm University at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofísica de Canarias. It is also based on observations obtained at the international Gemini Observatory (programme IDs GS-2019B-DD-106 and GS-2019B-FT-209), a programme of NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation on behalf of the Gemini Observatory partnership: the National Science Foundation (United States), National Research Council (Canada), Agencia Nacional de Investigación y Desarrollo (Chile), Ministerio de Ciencia, Tecnología e Innovación (Argentina), Ministério da Ciência, Tecnologia, Inovações e Comunicações (Brazil) and Korea Astronomy and Space Science Institute (Republic of Korea). The data were processed using the Gemini IRAF package and DRAGONS (Data Reduction for Astronomy from Gemini Observatory North and South). In addition, this study is based on observations made with the NASA/ESA Hubble Space Telescope obtained from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. These observations are associated with programme nos. 16051 and 16458. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. The Pan-STARRS1 Surveys (PS1) and the PS1 public science archive have been made possible through contributions by the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg, and the Max Planck Institute for Extraterrestrial Physics, Garching, We also thank Johns Hopkins University, Durham University, the University of Edinburgh, the Queen’s University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, NASA under Grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation Grant No. AST-1238877, the University of Maryland, Eotvos Lorand University, the Los Alamos National Laboratory and the Gordon and Betty Moore Foundation. The work is partly based on observations obtained as part of the VISTA Hemisphere Survey, ESO Progam, 179.A-2010 (PI: McMahon). We made use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by NASA.

Author information

Authors and Affiliations

Authors

Contributions

A.J.L. obtained, reduced and analysed observations and wrote the text. D.B.M. obtained and reduced the NOT observations, performed subtractions and photometry and contributed to analysis and interpretation. B.P.G. undertook the Swift BAT and XRT analyses and contributed to analysis and interpretation. A.E.N. performed analysis of the host galaxy with Prospector. M.N. contributed to the light curve, TDE sections and spectral analysis. S.R.O. analysed the UVOT data. D.A.P. contributed to the NOT observations and interpretation. J.R. worked with the Gemini observations, photometry and subtractions. B.D.M. contributed to the theoretical discussion and interpretation. S.S. provided the comparison between the X-ray/gamma-ray light curves of GRB 191019A and other bursts. E.R.S. worked on population modelling of the host galaxy. A.I. performed the fit of the spectrum with pPXF. A.A.C. investigated the host population and contributed to interpretation. K.B. and A.F. worked on the HST observations and provided comments. A.d.U.P. worked on the NOT observations and commented on the text. W.F. worked on the interpretation. G.F. provided theoretical interpretation. J.P.U.F. led the first NOT observations and provided comments. N.G. worked on the offset implications. K.E.H. worked on the NOT data and interpretation. J.H. worked on interpretation and text. P.G.J. worked on the interpretation, in particular, with regard to TDE possibilities. G.L. worked on the interpretation and I.M. provided theoretical input. J.S. and P.J. worked on the NOT data and provided comments. N.R.T. was involved in the NOT, Gemini and HST observations.

Corresponding author

Correspondence to Andrew J. Levan.

Ethics declarations

Competing interests

The authors declare no competing interests

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–6 and Tables 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levan, A.J., Malesani, D.B., Gompertz, B.P. et al. A long-duration gamma-ray burst of dynamical origin from the nucleus of an ancient galaxy. Nat Astron 7, 976–985 (2023). https://doi.org/10.1038/s41550-023-01998-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-01998-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing