Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A photonic integrated continuous-travelling-wave parametric amplifier

Abstract

The ability to amplify optical signals is of pivotal importance across science and technology typically using rare-earth-doped fibres or gain media based on III–V semiconductors. A different physical process to amplify optical signals is to use the Kerr nonlinearity of optical fibres through parametric interactions1,2. Pioneering work demonstrated continuous-wave net-gain travelling-wave parametric amplification in fibres3, enabling, for example, phase-sensitive (that is, noiseless) amplification4, link span increase5, signal regeneration and nonlinear phase noise mitigation6. Despite great progress7,8,9,10,11,12,13,14,15, all photonic integrated circuit-based demonstrations of net parametric gain have necessitated pulsed lasers, limiting their practical use. Until now, only bulk micromachined periodically poled lithium niobate (PPLN) waveguide chips have achieved continuous-wave gain16,17, yet their integration with silicon-wafer-based photonic circuits has not been shown. Here we demonstrate a photonic-integrated-circuit-based travelling-wave optical parametric amplifier with net signal gain in the continuous-wave regime. Using ultralow-loss, dispersion-engineered, metre-long, Si3N4 photonic integrated circuits18 on a silicon chip of dimensions 5 × 5 mm2, we achieve a continuous parametric gain of 12 dB that exceeds both the on-chip optical propagation loss and fibre–chip–fibre coupling losses in the telecommunication C band. Our work demonstrates the potential of photonic-integrated-circuit-based parametric amplifiers that have lithographically controlled gain spectrum, compact footprint, resilience to optical feedback and quantum-limited performance, and can operate in the wavelength ranges from visible to mid-infrared and outside conventional rare-earth amplification bands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principle of a photonic-integrated-circuit-based continuous-travelling-wave optical parametric amplifier.
Fig. 2: Photonic-chip-based, continuous-travelling-wave optical parametric amplifier and frequency conversion.
Fig. 3: Parametric gain measurement using pump modulation.

Similar content being viewed by others

Data availability

The code and data used to produce the plots are found on the Zenodo repository https://doi.org/10.5281/zenodo.6989024.

References

  1. Stolen, R. & Bjorkholm, J. Parametric amplification and frequency conversion in optical fibers. IEEE J. Quantum Electron. 18, 1062–1072 (1982).

    Article  Google Scholar 

  2. Hansryd, J., Andrekson, P. A., Westlund, M., Li, J. & Hedekvist, P.-O. Fiber-based optical parametric amplifiers and their applications. IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).

    Article  CAS  Google Scholar 

  3. Hansryd, J. & Andrekson, P. A. Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency. IEEE Photonics Technol. Lett. 13, 194–196 (2001).

    Article  Google Scholar 

  4. Tong, Z. et al. Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers. Nat. Photon. 5, 430–436 (2011).

    Article  CAS  Google Scholar 

  5. Olsson, S. L., Eliasson, H., Astra, E., Karlsson, M. & Andrekson, P. A. Long-haul optical transmission link using low-noise phase-sensitive amplifiers. Nat. Commun. 9, 2513 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Olsson, S. L., Karlsson, M. & Andrekson, P. A. Nonlinear phase noise mitigation in phase-sensitive amplified transmission systems. Opt. Express 23, 11724–11740 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Foster, M. A. et al. Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960–963 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Lamont, M. R. et al. Net-gain from a parametric amplifier on a chalcogenide optical chip. Opt. Express 16, 20374–20381 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Kuyken, B. et al. 50 dB parametric on-chip gain in silicon photonic wires. Opt. Lett. 36, 4401–4403 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Morichetti, F. et al. Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion. Nat. Commun. 2, 296 (2011).

    Article  PubMed  Google Scholar 

  11. Wang, K.-Y. & Foster, A. C. GHz-rate optical parametric amplifier in hydrogenated amorphous silicon. J. Opt. 17, 094012 (2015).

    Article  Google Scholar 

  12. Pu, M. et al. Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing. Laser Photonics Rev. 12, 1800111 (2018).

    Article  Google Scholar 

  13. Ooi, K. et al. Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge. Nat. Commun. 8, 13878 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, X., Osgood, R. M., Vlasov, Y. A. & Green, W. M. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nat. Photon. 4, 557–560 (2010).

    Article  CAS  Google Scholar 

  15. Gajda, A. et al. Highly efficient CW parametric conversion at 1550 nm in SOI waveguides by reverse biased p-i-n junction. Opt. Express 20, 13100–13107 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Umeki, T., Tadanaga, O., Takada, A. & Asobe, M. Phase sensitive degenerate parametric amplification using directly-bonded PPLN ridge waveguides. Opt. Express 19, 6326–6332 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Kishimoto, T., Inafune, K., Ogawa, Y., Sasaki, H. & Murai, H. Highly efficient phase-sensitive parametric gain in periodically poled LiNbO3 ridge waveguide. Opt. Lett. 41, 1905–1908 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, J. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 12, 2236 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mears, R. J., Reekie, L., Jauncey, I. M. & Payne, D. N. in Proc. Optical Fiber Communication Conference WI2 (Optical Society of America, 1987).

  20. Desurvire, E., Simpson, J. R. & Becker, P. C. High-gain erbium-doped traveling-wave fiber amplifier. Opt. Lett. 12, 888–890 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Temprana, E. et al. Overcoming Kerr-induced capacity limit in optical fiber transmission. Science 348, 1445–1448 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Yamamoto, T. et al. Flux-driven Josephson parametric amplifier. Appl. Phys. Lett. 93, 042510 (2008).

    Article  Google Scholar 

  23. Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  24. Macklin, C. et al. A near–quantum-limited Josephson traveling-wave parametric amplifier. Science 350, 307–310 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Marhic, M. E. et al. Fiber optical parametric amplifiers in optical communication systems. Laser Photonics Rev. 9, 50–74 (2015).

    Article  Google Scholar 

  27. Marhic, M., Kagi, N., Chiang, T.-K. & Kazovsky, L. Broadband fiber optical parametric amplifiers. Opt. Lett. 21, 573–575 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Torounidis, T., Andrekson, P. A. & Olsson, B.-E. Fiber-optical parametric amplifier with 70-db gain. IEEE Photonics Technol. Lett. 18, 1194–1196 (2006).

    Article  Google Scholar 

  29. Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics 13, 242–352 (2021).

    Article  Google Scholar 

  30. Ledezma, L. et al. Intense optical parametric amplification in dispersion-engineered nanophotonic lithium niobate waveguides. Optica 9, 303–308 (2022).

    Article  Google Scholar 

  31. Xuan, Y. et al. High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica 3, 1171–1180 (2016).

    Article  CAS  Google Scholar 

  32. Ye, Z., Twayana, K., Andrekson, P. A. & Torres-Company, V. High-Q Si3N4 microresonators based on a subtractive processing for Kerr nonlinear optics. Opt. Express 27, 35719–35727 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Chang, L. et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun. 11, 1331 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wilson, D. J. et al. Integrated gallium phosphide nonlinear photonics. Nat. Photon. 14, 57–62 (2020).

    Article  CAS  Google Scholar 

  35. Jung, H. et al. Tantala Kerr nonlinear integrated photonics. Optica 8, 811–817 (2021).

    Article  Google Scholar 

  36. Kim, D.-G. et al. Universal light-guiding geometry for on-chip resonators having extremely high Q-factor. Nat. Commun. 11, 5933 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Levy, J. S. et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photon. 4, 37–40 (2010).

    Article  CAS  Google Scholar 

  38. Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

    Article  CAS  Google Scholar 

  39. Gyger, F. et al. Observation of stimulated Brillouin scattering in silicon nitride integrated waveguides. Phys. Rev. Lett. 124, 013902 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36, 3398–3400 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Turner, A. C. et al. Tailored anomalous group-velocity dispersion in silicon channel waveguides. Opt. Express 14, 4357–4362 (2006).

    Article  PubMed  Google Scholar 

  43. Blows, J. L. & French, S. E. Low-noise-figure optical parametric amplifier with a continuous-wave frequency-modulated pump. Opt. Lett. 27, 491–493 (2002).

    Article  PubMed  Google Scholar 

  44. Mussot, A. et al. Impact of pump phase modulation on the gain of fiber optical parametric amplifier. IEEE Photonics Technol. Lett. 16, 1289–1291 (2004).

    Article  Google Scholar 

  45. Ikeda, K., Saperstein, R. E., Alic, N. & Fainman, Y. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt. Express 16, 12987–12994 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Gao, M. et al. Probing material absorption and optical nonlinearity of integrated photonic materials. Nat. Commun. 13, 3323 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Karlsson, M. Four-wave mixing in fibers with randomly varying zero-dispersion wavelength. J. Opt. Soc. Am. B 15, 2269–2275 (1998).

    Article  CAS  Google Scholar 

  48. Torres-Company, V., Ye, Z., Zhao, P., Karlsson, M. & Andrekson, P. A. in 2022 Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2022).

  49. Ye, Z. et al. Overcoming the quantum limit of optical amplification in monolithic waveguides. Science Adv. 7, eabi8150 (2021).

    Article  CAS  Google Scholar 

  50. Del’Haye, P., Arcizet, O., Gorodetsky, M. L., Holzwarth, R. & Kippenberg, T. J. Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nat. Photon. 3, 529–533 (2009).

    Article  Google Scholar 

  51. Liu, J. et al. Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers. Opt. Lett. 41, 3134–3137 (2016).

    Article  PubMed  Google Scholar 

  52. He, J. et al. Low-loss integrated nanophotonic circuits with layered semiconductor materials. Nano Lett. 21, 2709–2718 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Soller, B. J., Gifford, D. K., Wolfe, M. S. & Froggatt, M. E. High resolution optical frequency domain reflectometry for characterization of components and assemblies. Opt. Express 13, 666–674 (2005).

    Article  PubMed  Google Scholar 

  54. Pu, M., Ottaviano, L., Semenova, E. & Yvind, K. Efficient frequency comb generation in AlGaAs-on-insulator. Optica 3, 823–826 (2016).

    Article  CAS  Google Scholar 

  55. Wilson, D. J. et al. Integrated gallium phosphide nonlinear photonics. Nat. Photon. 14, 57–62 (2020).

    Article  CAS  Google Scholar 

  56. Gondarenko, A., Levy, J. S. & Lipson, M. High confinement micron-scale silicon nitride high Q ring resonator. Opt. Express 17, 11366–11370 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Levy, J. Integrated Nonlinear Optics In Silicon Nitride Waveguides and Resonators. PhD thesis, Cornell Univ. (2011).

Download references

Acknowledgements

We thank T. Liu for assisting in the waveguide spiral design and M. H. Anderson for the discussion. The Si3N4 chips were fabricated in the EPFL Center of MicroNanoTechnology (CMi). This work was supported by the Air Force Office of Scientific Research (AFOSR) under award no. FA9550-19-1-0250, by contract HR0011-20-2-0046 (NOVEL) from the Defense Advanced Research Projects Agency (DARPA), Microsystems Technology Office (MTO) and by the Swiss National Science Foundation (SNSF) under grant agreement no. 192293. J.R. acknowledges support from the SNSF under an Ambizione Fellowship (201923).

Author information

Authors and Affiliations

Authors

Contributions

J.L. and R.N.W. designed and fabricated the samples. J.R., N.K. and J.H. performed the experiments and data analysis. J.R. performed the numerical simulations. J.R., J.L. and T.J.K. wrote the manuscript. T.J.K. supervised the project.

Corresponding authors

Correspondence to Johann Riemensberger or Tobias J. Kippenberg.

Ethics declarations

Competing interests

T.J.K. is a cofounder and shareholder of LiGenTec SA, a company that is engaged in making Si3N4 nonlinear photonic chips available through foundry service.

Peer review

Peer review information

Nature thanks Dawn T. H. Tan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Numerical calculations of maximum (small) signal gain as a function of waveguide loss and length.

a, For a waveguide of cross section dimensions 2,450 nm × 910 nm and pump power of 4 W, as used in this study. The dotted grey lines represent the threshold for on-chip parametric gain. b, For optimized waveguide cross section of 2,100 nm × 670 nm using 0.75 W of pump power. The lowest waveguide loss value of 0.15 dB m−1 represents the waveguide absorption loss of Si3N4 structures fabricated using the photonic Damascene process at EPFL.

Extended Data Fig. 2 Frequency-comb-calibrated characterization of waveguide spirals.

a, Optical setup. See text for description. b, Calibrated transmission spectrum through a spiral. The trace colours indicate the three individual external-cavity diode laser scans. c, Calibrated reflection spectrum inside and from a spiral. d, OFDR traces are analysed using segmented Fourier transformation and vertically offset by 15 dB. The shading indicates the centre frequency according to panel e. The propagation loss fitting region is marked with vertical orange lines. The propagation loss is determined from the dotted line fit. e, Propagation loss extracted from OFDR. Extracted propagation losses are relative to optical distance and must be multiplied by the group index of 2.08 for conversion to the physical waveguide length. The values represent upper bounds owing to a background of laser phase noise that induces an increased gradient. f,g, Zooming into OFDR traces around the front (f) and back (g) facets. Dots depict successful identification of backside facet reflection for valid dispersion measurement. h, Inverse group velocity β1 as a function of wavelength. Markers correspond to f,g. The black line indicates the fitted waveguide dispersion curve up to the third order.

Extended Data Fig. 3 Mode mixing and interference in rectangular waveguide spirals.

a, Schematic indication of a typical 90° waveguide bend in a rectangular spiral. All bends are identical and have a radius of 230 μm. Insets show the normalized mode profile for the TE00, TE10 and TE20 modes. b, Simulated group refractive indices for the TE00, TE10 and TE20 modes of a 2.45 μm × 0.91 μm strip waveguide with vertical sidewalls. c, Calculated spectral frequencies for destructive interference between higher-order mode excitation at the beginning and at the end of the waveguide bend.

Extended Data Fig. 4 Raw data of gain spectrum measurement.

See the main text for detailed description.

Extended Data Table 1 Comparison of the state-of-the-art, photonic-integrated-circuit-based TWOPAs and frequency converters

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riemensberger, J., Kuznetsov, N., Liu, J. et al. A photonic integrated continuous-travelling-wave parametric amplifier. Nature 612, 56–61 (2022). https://doi.org/10.1038/s41586-022-05329-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05329-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing