Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bifunctional hydroformylation on heterogeneous Rh-WOx pair site catalysts

Abstract

Metal-catalysed reactions are often hypothesized to proceed on bifunctional active sites, whereby colocalized reactive species facilitate distinct elementary steps in a catalytic cycle1,2,3,4,5,6,7,8. Bifunctional active sites have been established on homogeneous binuclear organometallic catalysts9,10,11. Empirical evidence exists for bifunctional active sites on supported metal catalysts, for example, at metal–oxide support interfaces2,6,7,12. However, elucidating bifunctional reaction mechanisms on supported metal catalysts is challenging due to the distribution of potential active-site structures, their dynamic reconstruction and required non-mean-field kinetic descriptions7,12,13. We overcome these limitations by synthesizing supported, atomically dispersed rhodium–tungsten oxide (Rh-WOx) pair site catalysts. The relative simplicity of the pair site structure and sufficient description by mean-field modelling enable correlation of the experimental kinetics with first principles-based microkinetic simulations. The Rh-WOx pair sites catalyse ethylene hydroformylation through a bifunctional mechanism involving Rh-assisted WOx reduction, transfer of ethylene from WOx to Rh and H2 dissociation at the Rh-WOx interface. The pair sites exhibited >95% selectivity at a product formation rate of 0.1 gpropanal cm−3 h−1 in gas-phase ethylene hydroformylation. Our results demonstrate that oxide-supported pair sites can enable bifunctional reaction mechanisms with high activity and selectivity for reactions that are performed in industry using homogeneous catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Coordination of atomically dispersed Rh to WOx with varying structure.
Fig. 2: Distinct catalytic behaviour of Rh-WOx pair sites.
Fig. 3: Pair site activation mechanism.
Fig. 4: Hydroformylation mechanism and kinetic simulations.

Similar content being viewed by others

Data availability

Source data associated with all theoretical and experimental analysis are provided with this paper. The data and code necessary to build the DFT-based microkinetic model that supports the plots in this paper are available on Zenodo at https://doi.org/10.5281/zenodo.6525676. Any other data in the supplementary information will be provided by the corresponding author upon request. 

References

  1. Cao, L. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 565, 631–635 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Saavedra, J. et al. The critical role of water at the gold-titania interface in catalytic CO oxidation. Science 345, 1599–1602 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Lam, E. et al. CO2 hydrogenation on Cu/Al2O3: role of the metal/support interface in driving activity and selectivity of a bifunctional catalyst. Angew. Chem. Int. Ed. 58, 13989–13996 (2019).

    Article  CAS  Google Scholar 

  4. Shekhar, M. et al. Size and support effects for the water–gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2. J. Am. Chem. Soc. 134, 4700–4708 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Carrasquillo-Flores, R. et al. Reverse water–gas shift on interfacial sites formed by deposition of oxidized molybdenum moieties onto gold nanoparticles. J. Am. Chem. Soc. 137, 10317–10325 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Kattel, S., Liu, P. & Chen, J. G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J. Am. Chem. Soc. 139, 9739–9754 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Zhao, Z. J. et al. Importance of metal–oxide interfaces in heterogeneous catalysis: a combined DFT, microkinetic, and experimental study of water–gas shift on Au/MgO. J. Catal. 345, 157–169 (2017).

    Article  CAS  Google Scholar 

  8. Blasco, T. et al. Carbonylation of methanol on metal-acid zeolites: evidence for a mechanism involving a multisite active center. Angew. Chem. Int. Ed. 46, 3938–3941 (2007).

    Article  CAS  Google Scholar 

  9. Campos, J. Bimetallic cooperation across the periodic table. Nat. Rev. Chem. 4, 696–702 (2020).

    Article  CAS  Google Scholar 

  10. Hetterscheid, D. G. H. et al. Binuclear cooperative catalysts for the hydrogenation and hydroformylation of olefins. ChemCatChem 5, 2785–2793 (2013).

    Article  CAS  Google Scholar 

  11. Garland, M. The catalytic binuclear elimination reaction: importance of non-linear kinetic effects and increased synthetic efficiency. Top. Organomet. Chem. 59, 187–231 (2015).

    Google Scholar 

  12. Alexeev, O., Shelef, M. & Gates, B. C. MgO-supported platinum–tungsten catalysts prepared from organometallic precursors: platinum clusters isolated on dispersed tungsten. J. Catal. 164, 1–15 (1996).

    Article  CAS  Google Scholar 

  13. Matsubu, J. C. et al. Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts. Nat. Chem. 9, 120–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Lwin, S. et al. Nature of WOx sites on SiO2 and their molecular structure–reactivity/selectivity relationships for propylene metathesis. ACS Catal. 6, 3061–3071 (2016).

    Article  CAS  Google Scholar 

  15. Matsubu, J. C., Yang, V. N. & Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 137, 3076–3084 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Sparta, M., Børve, K. J. & Jensen, V. R. Activity of rhodium-catalyzed hydroformylation: added insight and predictions from theory. J. Am. Chem. Soc. 129, 8487–8499 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Li, C., Wang, W., Yan, L. & Ding, Y. A mini review on strategies for heterogenization of rhodium-based hydroformylation catalysts. Front. Chem. Sci. Eng. 12, 113–123 (2018).

    Article  CAS  Google Scholar 

  18. Mol, J. C. Industrial applications of olefin metathesis. J. Mol. Catal. A 213, 39–45 (2004).

    Article  CAS  Google Scholar 

  19. Ross-Medgaarden, E. I. & Wachs, I. E. Structural determination of bulk and surface tungsten oxides with UV–vis diffuse reflectance spectroscopy and raman spectroscopy. J. Phys. Chem. C 111, 15089–15099 (2007).

    Article  CAS  Google Scholar 

  20. Barton, D. G. et al. Structure and electronic properties of solid acids based on tungsten oxide nanostructures. J. Phys. Chem. B 103, 630–640 (1999).

    Article  CAS  Google Scholar 

  21. Ro, I. et al. Synthesis of heteroatom Rh-ReOx atomically dispersed species on Al2O3 and their tunable catalytic reactivity in ethylene hydroformylation. ACS Catal. 9, 10899–10912 (2019).

    Article  CAS  Google Scholar 

  22. Rice, C. A. et al. The oxidation state of dispersed Rh on Al2O3. J. Chem. Phys. 74, 6487–6497 (1981).

    Article  ADS  CAS  Google Scholar 

  23. Lee, S. et al. Theoretical study of ethylene hydroformylation on atomically dispersed Rh/Al2O3 catalysts: reaction mechanism and influence of ReOx promoter. ACS Catal. 11, 9506–9518 (2021).

    Article  CAS  Google Scholar 

  24. Perez-Aguilar, J. E. et al. Isostructural atomically dispersed rhodium catalysts supported on SAPO-37 and on HY zeolite. J. Am. Chem. Soc. 142, 11474–11485 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Brundage, M. A. & Chuang, S. S. C. Experimental and modeling study of hydrogenation using deuterium step transient response during ethylene hydroformylation. J. Catal. 164, 94–108 (1996).

    Article  CAS  Google Scholar 

  26. Lange, J. P. Performance metrics for sustainable catalysis in industry. Nat. Catal. 4, 186–192 (2021).

    Article  CAS  Google Scholar 

  27. Digne, M. et al. Hydroxyl groups on γ-alumina surfaces: a DFT study. J. Catal. 211, 1–5 (2002).

    Article  CAS  Google Scholar 

  28. Navidi, N., Thybaut, J. W. & Marin, G. B. Experimental investigation of ethylene hydroformylation to propanal on Rh and Co based catalysts. Appl. Catal. A 469, 357–366 (2014).

    Article  CAS  Google Scholar 

  29. Shylesh, S. et al. In situ formation of Wilkinson-type hydroformylation catalysts: insights into the structure, stability, and kinetics of triphenylphosphine- and xantphos-modified Rh/SiO2. ACS Catal. 3, 348–357 (2013).

    Article  CAS  Google Scholar 

  30. Whittaker, T. et al. H2 oxidation over supported Au nanoparticle catalysts: evidence for heterolytic H2 activation at the metal–support interface. J. Am. Chem. Soc. 140, 16469–16487 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Baz, A. & Holewinski, A. Understanding the interplay of bifunctional and electronic effects: microkinetic modeling of the CO electro-oxidation reaction. J. Catal. 384, 1–13 (2020).

    Article  CAS  Google Scholar 

  32. Darby, M. T. et al. Lonely atoms with special gifts: breaking linear scaling relationships in heterogeneous catalysis with single-atom alloys. J. Phys. Chem. Lett. 9, 5636–5646 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Andersen, M. et al. Analyzing the case for bifunctional catalysis. Angew. Chem. Int. Ed. 55, 5210–5214 (2016).

    Article  CAS  Google Scholar 

  34. Kumar, G. et al. Multicomponent catalysts: limitations and prospects. ACS Catal. 8, 3202–3208 (2018).

    Article  CAS  Google Scholar 

  35. Qi, J. et al. Selective methanol carbonylation to acetic acid on heterogeneous atomically dispersed ReO4/SiO2 catalysts. J. Am. Chem. Soc. 142, 14178–14189 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Hoffman, A. J. et al. Theoretical and experimental characterization of adsorbed CO and NO on γ-Al2O3-supported Rh nanoparticles. J. Phys. Chem. C 125, 19733–19755 (2021).

    Article  CAS  Google Scholar 

  37. Sirita, J., Phanichphant, S. & Meunier, F. C. Quantitative analysis of adsorbate concentrations by diffuse reflectance FT-IR. Anal. Chem. 79, 3912–3918 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Lwin, S. et al. Surface ReOx sites on Al2O3 and their molecular structure–reactivity relationships for olefin metathesis. ACS Catal. 5, 1432–1444 (2015).

    Article  CAS  Google Scholar 

  39. Chupas, P. J. et al. A versatile sample-environment cell for non-ambient X-ray scattering experiments. J. Appl. Crystallogr. 41, 822–824 (2008).

    Article  CAS  Google Scholar 

  40. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Ro, I. et al. The role of Pt-FexOy interfacial sites for CO oxidation. J. Catal. 358, 19–26 (2018).

    Article  CAS  Google Scholar 

  42. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  PubMed  Google Scholar 

  44. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  45. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  46. Sheppard, D., Terrell, R. & Henkelman, G. Optimization methods for finding minimum energy paths. J. Chem. Phys. 128, 134106 (2008).

    Article  ADS  PubMed  Google Scholar 

  47. Sheppard, D. et al. A generalized solid-state nudged elastic band method. J. Chem. Phys. 136, 074103 (2012).

    Article  ADS  PubMed  Google Scholar 

  48. Coltrin, M. E., Kee, R. J., Rupley, F. M. & Meeks, E. SURFACE CHEMKIN-III: A Fortran Package for Analyzing Heterogeneous Chemical Kinetics at a Solid-surface–Gas-phase Interface Report SAND96-8217 (Sandia, 1996).

  49. Lym, J., Wittreich, G. R. & Vlachos, D. G. A Python multiscale thermochemistry toolbox (pMuTT) for thermochemical and kinetic parameter estimation. Comput. Phys. Commun. 247, 106864 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I.R., J.Q., S.L., D.G.V., S.C. and P.C. acknowledge the Catalysis Center for Energy Innovation, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC0001004. M.X., X.Y. and X.P. acknowledges the NSF awards under grant nos CBET-2031494 and CHE-1955786 for support for the microscopy. This research used 7-BM (QAS) beamline of the National Synchrotron Light Source II, a US DOE Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under contract no. DE-SC0012704. Beamline operations were supported in part by the Synchrotron Catalysis Consortium (US DOE, Office of Basic Energy Sciences, grant no. DE-SC0012335). I.R. acknowledges the National Research Foundation of Korea (NRF) grant funded by The Ministry of Science and ICT (MSIT) (NRF-2021R1F1A1054980). The authors acknowledge the use of facilities and instrumentation at the UC Irvine Materials Research Institute (IMRI) supported in part by the NSF through the MRSEC program (DMR-2011967). We acknowledge A. B. Getsoian for providing the 10% Rh/Al2O3 Rh nanoparticle control sample. J. Resasco is acknowledged for his comments on the paper.

Author information

Authors and Affiliations

Authors

Contributions

I.R. and J.Q. synthesized, characterized and evaluated the reactivity of all catalysts. S.L. executed all theoretical analyses. M.X. and X.Y. performed all microscopy. Z.X. performed XAS measurements and associated data analysis. G.Z. designed and built the high-pressure reactor. A.M. helped develop catalyst synthesis methodologies. J.G.C. oversaw the XAS measurements and analysis. X.P. oversaw the microscopy and analysis. D.G.V. and S.C. oversaw the theoretical calculations and analysis. P.C. conceived and managed the overall project. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Phillip Christopher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Peer review information

Nature thanks Tiefeng Wang and Mie Andersen for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ro, I., Qi, J., Lee, S. et al. Bifunctional hydroformylation on heterogeneous Rh-WOx pair site catalysts. Nature 609, 287–292 (2022). https://doi.org/10.1038/s41586-022-05075-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05075-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing