Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct observation of vortices in an electron fluid

Abstract

Vortices are the hallmarks of hydrodynamic flow. Strongly interacting electrons in ultrapure conductors can display signatures of hydrodynamic behaviour, including negative non-local resistance1,2,3,4, higher-than-ballistic conduction5,6,7, Poiseuille flow in narrow channels8,9,10 and violation of the Wiedemann–Franz law11. Here we provide a visualization of whirlpools in an electron fluid. By using a nanoscale scanning superconducting quantum interference device on a tip12, we image the current distribution in a circular chamber connected through a small aperture to a current-carrying strip in the high-purity type II Weyl semimetal WTe2. In this geometry, the Gurzhi momentum diffusion length and the size of the aperture determine the vortex stability phase diagram. We find that vortices are present for only small apertures, whereas the flow is laminar (non-vortical) for larger apertures. Near the vortical-to-laminar transition, we observe the single vortex in the chamber splitting into two vortices; this behaviour is expected only in the hydrodynamic regime and is not anticipated for ballistic transport. These findings suggest a new mechanism of hydrodynamic flow in thin pure crystals such that the spatial diffusion of electron momenta is enabled by small-angle scattering at the surfaces instead of the routinely invoked electron–electron scattering, which becomes extremely weak at low temperatures. This surface-induced para-hydrodynamics, which mimics many aspects of conventional hydrodynamics including vortices, opens new possibilities for exploring and using electron fluidics in high-mobility electron systems.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Ohmic electron flow in Au film.
Fig. 2: Laminar and vortical flows in WTe2.
Fig. 3: Vortex stability phase diagram.
Fig. 4: Laminar to double-vortex to single-vortex transition.
Fig. 5: Current dependence of the vortex state.

Data availability

The data that support the findings of this study are available from the corresponding authors on request.

Code availability

The current reconstruction codes used in this study are available from the corresponding authors on request.

References

  1. Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).

    ADS  CAS  Google Scholar 

  2. Levin, A. D., Gusev, G. M., Levinson, E. V., Kvon, Z. D. & Bakarov, A. K. Vorticity-induced negative nonlocal resistance in a viscous two-dimensional electron system. Phys. Rev. B 97, 245308 (2018).

    ADS  CAS  Google Scholar 

  3. Bandurin, D. A. et al. Fluidity onset in graphene. Nat. Commun. 9, 4533 (2018).

    ADS  Google Scholar 

  4. Gupta, A. et al. Hydrodynamic and ballistic transport over large length scales in GaAs/AlGaAs. Phys. Rev. Lett. 126, 076803 (2021).

    ADS  CAS  Google Scholar 

  5. Krishna Kumar, R. et al. Superballistic flow of viscous electron fluid through graphene constrictions. Nat. Phys. 13, 1182–1185 (2017).

    CAS  Google Scholar 

  6. Ginzburg, L. V. et al. Superballistic electron flow through a point contact in a Ga[Al]As heterostructure. Phys. Rev. Res. 3, 023033 (2021).

    CAS  Google Scholar 

  7. Kumar, C. et al. Imaging hydrodynamic electrons flowing without Landauer–Sharvin resistance. Preprint at https://doi.org/10.48550/arXiv.2111.06412 (2021).

  8. Sulpizio, J. A. et al. Visualizing Poiseuille flow of hydrodynamic electrons. Nature 576, 75–79 (2019).

    ADS  CAS  Google Scholar 

  9. Ku, M. J. H. et al. Imaging viscous flow of the Dirac fluid in graphene. Nature 583, 537–541 (2020).

    ADS  CAS  Google Scholar 

  10. Vool, U. et al. Imaging phonon-mediated hydrodynamic flow in WTe2. Nat. Phys. 17, 1216–1220 (2021).

    CAS  Google Scholar 

  11. Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann–Franz law in graphene. Science 351, 1058–1061 (2016).

    ADS  CAS  Google Scholar 

  12. Vasyukov, D. et al. A scanning superconducting quantum interference device with single electron spin sensitivity. Nat. Nanotechnol. 8, 639–644 (2013).

    ADS  CAS  Google Scholar 

  13. Gurzhi, R. N. Hydrodynamic effects in solids at low temperature. Sov. Phys. Usp. 11, 255–270 (1968).

    ADS  Google Scholar 

  14. Landau, L. D. & Lifshitz, E. M. Fluid Mechanics (Elsevier, 1987).

  15. Mayzel, J., Steinberg, V. & Varshney, A. Stokes flow analogous to viscous electron current in graphene. Nat. Commun. 10, 937 (2019).

    ADS  Google Scholar 

  16. Molenkamp, L. W. & de Jong, M. J. M. Observation of Knudsen and Gurzhi transport regimes in a two-dimensional wire. Solid State Electron. 37, 551–553 (1994).

    ADS  CAS  Google Scholar 

  17. de Jong, M. J. M. & Molenkamp, L. W. Hydrodynamic electron flow in high-mobility wires. Phys. Rev. B 51, 13389–13402 (1995).

    ADS  Google Scholar 

  18. Taubert, D. et al. An electron jet pump: the Venturi effect of a Fermi liquid. J. Appl. Phys. 109, 102412 (2011).

    ADS  Google Scholar 

  19. Moll, P. J. W., Kushwaha, P., Nandi, N., Schmidt, B. & Mackenzie, A. P. Evidence for hydrodynamic electron flow in PdCoO2. Science 351, 1061–1064 (2016).

    ADS  CAS  Google Scholar 

  20. Braem, B. A. et al. Scanning gate microscopy in a viscous electron fluid. Phys. Rev. B 98, 241304 (2018).

    ADS  CAS  Google Scholar 

  21. Gusev, G. M., Jaroshevich, A. S., Levin, A. D., Kvon, Z. D. & Bakarov, A. K. Stokes flow around an obstacle in viscous two-dimensional electron liquid. Sci. Rep. 10, 7860 (2020).

    ADS  CAS  Google Scholar 

  22. Raichev, O. E., Gusev, G. M., Levin, A. D. & Bakarov, A. K. Manifestations of classical size effect and electronic viscosity in the magnetoresistance of narrow two-dimensional conductors: theory and experiment. Phys. Rev. B 101, 235314 (2020).

    ADS  CAS  Google Scholar 

  23. Gusev, G. M., Jaroshevich, A. S., Levin, A. D., Kvon, Z. D. & Bakarov, A. K. Viscous magnetotransport and Gurzhi effect in bilayer electron system. Phys. Rev. B 103, 075303 (2021).

    ADS  CAS  Google Scholar 

  24. Krebs, Z. J. et al. Imaging the breaking of electrostatic dams in graphene for ballistic and viscous fluids. Preprint at https://doi.org/10.48550/arXiv.2106.07212 (2021).

  25. Samaddar, S. et al. Evidence for local spots of viscous electron flow in graphene at moderate mobility. Nano Lett. 21, 9365–9373 (2021).

    ADS  CAS  Google Scholar 

  26. Govorov, A. O. & Heremans, J. J. Hydrodynamic effects in interacting Fermi electron jets. Phys. Rev. Lett. 92, 026803 (2004).

    ADS  Google Scholar 

  27. Di Sante, D. et al. Turbulent hydrodynamics in strongly correlated Kagome metals. Nat. Commun. 11, 3997 (2020).

    ADS  Google Scholar 

  28. Huang, Y. & Wang, M. Nonnegative magnetoresistance in hydrodynamic regime of electron fluid transport in two-dimensional materials. Phys. Rev. B 104, 155408 (2021).

    ADS  CAS  Google Scholar 

  29. Hui, A., Oganesyan, V. & Kim, E. Beyond Ohm’s law: Bernoulli effect and streaming in electron hydrodynamics. Phys. Rev. B 103, 235152 (2021).

    ADS  CAS  Google Scholar 

  30. Narozhny, B. N., Gornyi, I. V. & Titov, M. Anti-Poiseuille flow in neutral graphene. Phys. Rev. B 104, 075443 (2021).

    ADS  CAS  Google Scholar 

  31. Tavakol, O. & Kim, Y. B. Artificial electric field and electron hydrodynamics. Phys. Rev. Res. 3, 013290 (2021).

    CAS  Google Scholar 

  32. Zhang, G., Kachorovskii, V., Tikhonov, K. & Gornyi, I. Heating of inhomogeneous electron flow in the hydrodynamic regime. Phys. Rev. B 104, 075417 (2021).

    ADS  CAS  Google Scholar 

  33. Li, S., Khodas, M. & Levchenko, A. Conformal maps of viscous electron flow in the Gurzhi crossover. Phys. Rev. B 104, 155305 (2021).

    ADS  CAS  Google Scholar 

  34. Nazaryan, K. G. & Levitov, L. Robustness of vorticity in electron fluids. Preprint at https://doi.org/10.48550/arXiv.2111.09878 (2021).

  35. Stern, A. et al. Spread and erase—how electron hydrodynamics can eliminate the Landauer–Sharvin resistance. Preprint at https://doi.org/10.48550/arXiv.2110.15369 (2021).

  36. Andreev, A. V., Kivelson, S. A. & Spivak, B. Hydrodynamic description of transport in strongly correlated electron systems. Phys. Rev. Lett. 106, 256804 (2011).

    ADS  CAS  Google Scholar 

  37. Mendoza, M., Herrmann, H. J. & Succi, S. Preturbulent regimes in graphene flow. Phys. Rev. Lett. 106, 156601 (2011).

    ADS  CAS  Google Scholar 

  38. Torre, I., Tomadin, A., Geim, A. K. & Polini, M. Nonlocal transport and the hydrodynamic shear viscosity in graphene. Phys. Rev. B 92, 165433 (2015).

    ADS  Google Scholar 

  39. Alekseev, P. S. Negative magnetoresistance in viscous flow of two-dimensional electrons. Phys. Rev. Lett. 117, 166601 (2016).

    ADS  CAS  Google Scholar 

  40. Pellegrino, F. M. D., Torre, I., Geim, A. K. & Polini, M. Electron hydrodynamics dilemma: whirlpools or no whirlpools. Phys. Rev. B 94, 155414 (2016).

    ADS  Google Scholar 

  41. Galitski, V., Kargarian, M. & Syzranov, S. Dynamo effect and turbulence in hydrodynamic Weyl metals. Phys. Rev. Lett. 121, 176603 (2018).

    ADS  CAS  Google Scholar 

  42. Shytov, A., Kong, J. F., Falkovich, G. & Levitov, L. Particle collisions and negative nonlocal response of ballistic electrons. Phys. Rev. Lett. 121, 176805 (2018).

    ADS  CAS  Google Scholar 

  43. Holder, T. et al. Ballistic and hydrodynamic magnetotransport in narrow channels. Phys. Rev. B 100, 245305 (2019).

    ADS  CAS  Google Scholar 

  44. Levitov, L. & Falkovich, G. Electron viscosity, current vortices and negative nonlocal resistance in graphene. Nat. Phys. 12, 672–676 (2016).

    CAS  Google Scholar 

  45. Falkovich, G. & Levitov, L. Linking spatial distributions of potential and current in viscous electronics. Phys. Rev. Lett. 119, 066601 (2017).

    ADS  Google Scholar 

  46. Danz, S. & Narozhny, B. N. Vorticity of viscous electronic flow in graphene. 2D Mater. 7, 035001 (2020).

    CAS  Google Scholar 

  47. Gabbana, A., Polini, M., Succi, S., Tripiccione, R. & Pellegrino, F. M. D. Prospects for the detection of electronic preturbulence in graphene. Phys. Rev. Lett. 121, 236602 (2018).

    ADS  CAS  Google Scholar 

  48. Meltzer, A. Y., Levin, E. & Zeldov, E. Direct reconstruction of two-dimensional currents in thin films from magnetic-field measurements. Phys. Rev. Appl. 8, 064030 (2017).

    ADS  Google Scholar 

  49. Kiselev, E. I. & Schmalian, J. Boundary conditions of viscous electron flow. Phys. Rev. B 99, 035430 (2019).

    ADS  CAS  Google Scholar 

  50. Woods, J. M. et al. Suppression of magnetoresistance in thin WTe2 flakes by surface oxidation. ACS Appl. Mater. Interfaces 9, 23175–23180 (2017).

    CAS  Google Scholar 

  51. Jenkins, A. et al. Imaging the breakdown of ohmic transport in graphene. Preprint at https://doi.org/10.48550/arXiv.2002.05065 (2020).

  52. Gooth, J. et al. Thermal and electrical signatures of a hydrodynamic electron fluid in tungsten diphosphide. Nat. Commun. 9, 4093 (2018).

    ADS  CAS  Google Scholar 

  53. Berdyugin, A. I. et al. Measuring Hall viscosity of graphene’s electron fluid. Science 364, 162–165 (2019).

    ADS  CAS  Google Scholar 

  54. Kim, M. et al. Control of electron–electron interaction in graphene by proximity screening. Nat. Commun. 11, 2339 (2020).

    ADS  CAS  Google Scholar 

  55. Geurs, J. et al. Rectification by hydrodynamic flow in an encapsulated graphene Tesla valve. Preprint at https://doi.org/10.48550/arXiv.2008.04862 (2020).

  56. Choi, Y.-G., Doan, M., Choi, G. & Chernodub, M. N. Pseudo-hydrodynamic flow of quasiparticles in semimetal WTe2 at room temperature. Preprint at https://doi.org/10.48550/arXiv.2201.08331 (2022).

  57. Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).

    ADS  CAS  Google Scholar 

  58. Wang, P. et al. Landau quantization and highly mobile fermions in an insulator. Nature 589, 225–229 (2021).

    ADS  CAS  Google Scholar 

  59. Kumar, N. et al. Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP2 and MoP2. Nat. Commun. 8, 1642 (2017).

    ADS  Google Scholar 

  60. Wang, L. et al. Tuning magnetotransport in a compensated semimetal at the atomic scale. Nat. Commun. 6, 8892 (2015).

    ADS  Google Scholar 

  61. Lv, Y.-Y. et al. Experimental observation of anisotropic Adler–Bell–Jackiw anomaly in type-II Weyl semimetal WTe1.98 crystals at the quasiclassical regime. Phys. Rev. Lett. 118, 096603 (2017).

    ADS  Google Scholar 

  62. Ali, M. N. et al. Correlation of crystal quality and extreme magnetoresistance of WTe2. Europhys. Lett. 110, 67002 (2015).

    ADS  Google Scholar 

  63. Wu, Y. et al. Temperature-induced Lifshitz transition in WTe2. Phys. Rev. Lett. 115, 166602 (2015).

    ADS  Google Scholar 

  64. Zhu, Z. et al. Quantum oscillations, thermoelectric coefficients, and the Fermi surface of semimetallic WTe2. Phys. Rev. Lett. 114, 176601 (2015).

    ADS  Google Scholar 

  65. Xiang, F.-X., Veldhorst, M., Dou, S.-X. & Wang, X.-L. Multiple Fermi pockets revealed by Shubnikov–de Haas oscillations in WTe2. Europhys. Lett. 112, 37009 (2015).

    ADS  Google Scholar 

  66. Zhang, Q. et al. Lifshitz transitions induced by temperature and surface doping in type‐II Weyl semimetal candidate Td‐WTe2. Phys. Status Solidi Rapid Res. Lett. 11, 1700209 (2017).

    ADS  Google Scholar 

  67. Luo, Y. et al. Hall effect in the extremely large magnetoresistance semimetal WTe2. Appl. Phys. Lett. 107, 182411 (2015).

    ADS  Google Scholar 

  68. Kirtley, J. R., Tsuei, C. C. & Moler, K. A. Temperature dependence of the half-integer magnetic flux quantum. Science 285, 1373–1375 (1999).

    CAS  Google Scholar 

  69. Kalisky, B. et al. Behavior of vortices near twin boundaries in underdoped Ba(Fe1−xCox)2As2. Phys. Rev. B 83, 064511 (2011).

    ADS  Google Scholar 

  70. Embon, L. et al. Probing dynamics and pinning of single vortices in superconductors at nanometer scales. Sci. Rep. 5, 7598 (2015).

    CAS  Google Scholar 

  71. Kremen, A. et al. Mechanical control of individual superconducting vortices. Nano Lett. 16, 1626–1630 (2016).

    ADS  CAS  Google Scholar 

  72. Embon, L. et al. Imaging of super-fast dynamics and flow instabilities of superconducting vortices. Nat. Commun. 8, 85 (2017).

    ADS  CAS  Google Scholar 

  73. Zhang, I. P. et al. Imaging anisotropic vortex dynamics in FeSe. Phys. Rev. B 100, 024514 (2019).

    ADS  CAS  Google Scholar 

  74. Anahory, Y. et al. SQUID-on-tip with single-electron spin sensitivity for high-field and ultra-low temperature nanomagnetic imaging. Nanoscale 12, 3174–3182 (2020).

    CAS  Google Scholar 

  75. Huber, M. E. et al. DC SQUID series array amplifiers with 120 MHz bandwidth. IEEE Trans. Appl. Supercond. 11, 1251–1256 (2001).

    ADS  Google Scholar 

  76. Finkler, A. et al. Self-aligned nanoscale SQUID on a tip. Nano Lett. 10, 1046–1049 (2010).

    ADS  CAS  Google Scholar 

  77. Finkler, A. et al. Scanning superconducting quantum interference device on a tip for magnetic imaging of nanoscale phenomena. Rev. Sci. Instrum. 83, 073702 (2012).

    ADS  CAS  Google Scholar 

  78. Halbertal, D. et al. Nanoscale thermal imaging of dissipation in quantum systems. Nature 539, 407–410 (2016).

    ADS  CAS  Google Scholar 

  79. Broadway, D. A. et al. Improved current density and magnetization reconstruction through vector magnetic field measurements. Phys. Rev. Appl. 14, 024076 (2020).

    ADS  CAS  Google Scholar 

  80. Guerrero-Becerra, K. A., Pellegrino, F. M. D. & Polini, M. Magnetic hallmarks of viscous electron flow in graphene. Phys. Rev. B 99, 041407 (2019).

    ADS  CAS  Google Scholar 

  81. Hasdeo, E. H., Ekström, J., Idrisov, E. G. & Schmidt, T. L. Electron hydrodynamics of two-dimensional anomalous Hall materials. Phys. Rev. B 103, 125106 (2021).

    ADS  CAS  Google Scholar 

  82. Guo, H., Ilseven, E., Falkovich, G. & Levitov, L. S. Higher-than-ballistic conduction of viscous electron flows. Proc. Natl Acad. Sci. USA 114, 3068–3073 (2017).

    ADS  CAS  Google Scholar 

  83. Müller, M., Schmalian, J. & Fritz, L. Graphene: a nearly perfect fluid. Phys. Rev. Lett. 103, 2–5 (2009).

    Google Scholar 

  84. Principi, A., Vignale, G., Carrega, M. & Polini, M. Bulk and shear viscosities of the two-dimensional electron liquid in a doped graphene sheet. Phys. Rev. B 93, 125410 (2016).

    ADS  Google Scholar 

  85. Scaffidi, T., Nandi, N., Schmidt, B., Mackenzie, A. P. & Moore, J. E. Hydrodynamic electron flow and Hall viscosity. Phys. Rev. Lett. 118, 226601 (2017).

    ADS  Google Scholar 

  86. Svintsov, D. Hydrodynamic-to-ballistic crossover in Dirac materials. Phys. Rev. B 97, 121405 (2018).

    ADS  CAS  Google Scholar 

  87. Burmistrov, I. S., Goldstein, M., Kot, M., Kurilovich, V. D. & Kurilovich, P. D. Dissipative and Hall viscosity of a disordered 2D electron gas. Phys. Rev. Lett. 123, 26804 (2019).

    ADS  CAS  Google Scholar 

  88. Ledwith, P., Guo, H., Shytov, A. & Levitov, L. Tomographic dynamics and scale-dependent viscosity in 2D electron systems. Phys. Rev. Lett. 123, 116601 (2019).

    ADS  CAS  Google Scholar 

  89. Narozhny, B. N. & Schütt, M. Magnetohydrodynamics in graphene: Shear and Hall viscosities. Phys. Rev. B 100, 035125 (2019).

    ADS  CAS  Google Scholar 

  90. Alekseev, P. S. & Dmitriev, A. P. Viscosity of two-dimensional electrons. Phys. Rev. B 102, 241409 (2020).

    ADS  CAS  Google Scholar 

  91. Toshio, R., Takasan, K. & Kawakami, N. Anomalous hydrodynamic transport in interacting noncentrosymmetric metals. Phys. Rev. Res. 2, 032021 (2020).

    CAS  Google Scholar 

  92. Narozhny, B. N., Gornyi, I. V. & Titov, M. Hydrodynamic collective modes in graphene. Phys. Rev. B 103, 115402 (2021).

    ADS  CAS  Google Scholar 

  93. Alekseev, P. S. et al. Counterflows in viscous electron-hole fluid. Phys. Rev. B 98, 125111 (2018).

    ADS  CAS  Google Scholar 

  94. Alekseev, P. S. et al. Nonmonotonic magnetoresistance of a two-dimensional viscous electron-hole fluid in a confined geometry. Phys. Rev. B 97, 085109 (2018).

    ADS  CAS  Google Scholar 

  95. Dell’Anna, L. & Metzner, W. Fermi surface fluctuations and single electron excitations near Pomeranchuk instability in two dimensions. Phys. Rev. B 73, 045127 (2006).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Shavit and V. Steinberg for discussions. This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (grant no. 785971), the German–Israeli Foundation for Scientific Research and Development (GIF; grant no. I-1505-303.10/2019) and the Israel Science Foundation (ISF; grant no. 994/19). G.F. was supported by the Scientific Excellence Center at WIS, the Simons Foundation (grant no. 662962), the EU Horizon 2020 programme (grant no. 873028), the US–Israel Binational Science Foundation (BSF; grant no. 2018033) and NSF–BSF (grant no. 2020765). B.Y. acknowledges financial support by the ERC (Consolidator NonlinearTopo Project, grant no. 815869) and the ISF (grant no. 2932/21). E.Z. acknowledges the support of the Andre Deloro Prize for Scientific Research. L.S.L. and E.Z. acknowledge the support of the Sagol Weizmann–MIT Bridge Program. M.H. and E.Z. acknowledge the support of the Leona M. and Harry B. Helmsley Charitable Trust grant no. 2018PG-ISL006 and 2112-04911. A.K.P. acknowledges postdoctoral fellowship support from the Council for Higher Education, Israel, through the Study in Israel program.

Author information

Authors and Affiliations

Authors

Contributions

A.A.-S., T.V., A.K. and E.Z. conceived the experiments. A.K.P. and M.H. grew and characterized the bulk WTe2 crystals. A.K. fabricated and characterized the devices. T.V. and A.A.-S. conducted the SOT magnetic imaging measurements and data analysis. I.R. and Y.M. fabricated the SOTs and the tuning fork feedback. A.Y.M. developed the current density reconstruction method. M.E.H. designed and built the SOT readout system. Y.W., T.H. and B.Y. performed the band structure and electron–electron scattering calculations. T.H. developed the vortex stability model. A.A.-S. performed the finite-element numerical simulations. G.F., L.S.L. and E.Z. developed the para-hydrodynamic model. A.A.-S., T.V., T.H., A.K.P., E.Z., G.F. and L.S.L. wrote the manuscript with contributions from the rest of the authors.

Corresponding author

Correspondence to E. Zeldov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Ilya Sochnikov, Uri Vool and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Transport characterization of bulk WTe2 single crystals.

a, Resistivity, \(\rho \), as a function of temperature of our highest purity crystal. At \(T=\) 2 K, the resistivity is \(\rho \,=\) 0.23 µΩ·cm corresponding to \(RRR\,\cong \) 3,250. Inset: optical image of crystals from the optimized quality growth. b, Magnetoresistance, \(MR=\frac{\rho (B)-\rho (0)}{\rho (0)}\), as a function of magnetic field at 2 K showing \(MR\,\cong \) 62,000 at 9 T. c, \(MR\) vs. \(RRR\) at \(T=\) 2 K and \(B\,=\) 9 T of our different crystals synthesized by flux growth (black dots) in comparison to reported values (open circles) in the literature10,62,63,64. The black line is a guide to the eye. d, Longitudinal and transverse conductivities \({\sigma }_{xx}\) and \({\sigma }_{xy}\) vs. magnetic field at 4.2 K and their fit to the two band model with resulting parameters \({n}_{e}\,=\) 2.4 × 1019 cm−3, \({n}_{h}=\) 2.3 × 1019 cm−3, \({\mu }_{e}=\) 5.1 × 105 cm2/Vs, and \({\mu }_{h}=\) 2.7 × 105 cm2/Vs.

Extended Data Fig. 2 Dependence of the reconstructed current densities on the assumed SOT scanning height.

a, Numerical simulation of \({J}_{x}(x,y)\) normalized by the average current density \({I}_{0}/W\) in the strip in \(\theta ={35}^{\circ }\) sample for \(D/W=\) 0.28 and \(\xi \,=\) 200 nm. The span of the color scale is \(\pm \)0.05. b–e, Current densities \({J}_{x}(x,y)\) reconstructed from the inversion of the measured \({B}_{z}(x,y)\) in WTe2 sample A with \(\theta ={35}^{\circ }\) assuming effective SOT scanning heights of \(h\,=\) 20 nm (b), 50 nm (c), 100 nm (d) and 150 nm (e). The nominal scanning height was 50 nm. The span of the color scale is \(\pm \)0.05. f–j, Same as a–e, but for \({J}_{y}(x,y)\) on color scale of \(\pm \)1. k–o, Same as f–j, but on expanded color scale of \(\pm \)0.05. The \({J}_{y}\) vortex counterflow current (light blue) is resolved in the chambers on a large artificial ringing background outside the strip edges.

Extended Data Fig. 3 Current profiles in narrow Au and WTe2 strips.

a, A uniform current density \({J}_{y}(x)\) in \(W=\) 550 nm strip (light green line) from which \({B}_{z}(x)\) is computed at a height \(h\,=\) 150 nm. The \({J}_{y}(x)\) (green dotted symbols) is then reconstructed by inversion of the calculated \({B}_{z}(x)\), showing the unavoidable distortions and ringing. The \({J}_{y}(x)\) reconstructed from the experimental \({B}_{z}(x)\) in the Au strip (black line) shows consistency with a uniform current distribution in the ohmic regime. b, Same as (a) for a Poiseuille current profile (light blue) with \(D/W=\) 0.28 and no-slip boundary conditions. The reconstructed \({J}_{y}(x)\) from the experimentally measured \({B}_{z}(x)\) in WTe2 strip (black) is inconsistent with the theoretically reconstructed \({J}_{y}(x)\) (dotted blue) from \({B}_{z}(x)\) corresponding to the Poiseuille profile. c, Same as (b) for hydrodynamic flow with \(D/W=\) 0.28 and slip length \(\xi \,=\) 200 nm (light blue) showing good correspondence between the theoretically reconstructed \({J}_{y}(x)\) (dotted blue) and the experimentally derived \({J}_{y}(x)\) (black) in accord with the conclusions in the main text. d, Same as (b) for hydrodynamic flow with \(D/W=\) 0.28 and no-stress boundary conditions (light blue). The reconstructed theoretical \({J}_{y}(x)\) (dotted blue) underestimates the experimentally derived \({J}_{y}(x)\) (black) supporting the conclusion of a finite slip length. eg, Comparison between theoretically calculated current profiles in the hydrodynamic regime with \(\xi =\) 200 nm (light blue line) and in the ballistic flow (light red line) with boundary reflectivity coefficients of \(r\,=\) 0 (fully diffuse) (e), \(r\,=\) 0.5 (f), and \(r\,=\) 1 (specular) (g). The solid lines show \({J}_{y}(x)\) calculated from Eqs. 2 and 3 while the dotted lines are the current profiles reconstructed from the calculated corresponding \({B}_{z}(x)\). These results demonstrate the difficulty in using reconstructed current profiles in strip geometry for distinguishing between the hydrodynamic flow with finite slip length and the ballistic transport, in contrast to vastly different vortex stability phase diagrams in these two regimes.

Extended Data Fig. 4 Comparison of field and current profiles in Au and WTe2 device C.

a, \({B}_{z}(x,y)\) in Au sample with \(\theta \,=\) 180° (same as Fig. 1f). b, Reconstructed current density \({J}_{y}(x,y)\) normalized by \({I}_{0}/W\) (same as Fig. 1d). c, Reconstructed current density \({J}_{x}(x,y)\) (same as Fig. 1g). d, \({B}_{z}(x,y)\) in WTe2 sample with \(\theta \,=\) 180°. e, Reconstructed current density \({J}_{y}(x,y)\). f, Reconstructed current density \({J}_{x}(x,y)\). g, \({B}_{z}(x,y)\) in Au sample with \(\theta \,=\) 45° (same as Fig. 1l). h, Reconstructed current density \({J}_{y}(x,y)\) (same as Fig. 1j). i, Reconstructed current density \({J}_{x}(x,y)\) (same as Fig. 1m). j, \({B}_{z}(x,y)\) in WTe2 sample with \(\theta \,=\) 45°. k, Reconstructed current density \({J}_{y}(x,y)\). l, Reconstructed current density \({J}_{x}(x,y)\) (same as Extended Data Fig. 9n).

Extended Data Fig. 5 Visualizing vortices without current inversion in WTe2 device A.

a, \({B}_{z}(x,y)\) in WTe2 sample with \(\theta \,=\) 20°. b, Same data after subtraction of the average field along the dashed lines, \({B}_{z}(x,y)-[{B}_{z}(x,y=1.22\,{\rm{\mu }}{\rm{m}})+{B}_{z}(x,y=-1.22\,{\rm{\mu }}{\rm{m}})]/2\), revealing a counterclockwise vortex in the left chamber generating a positive \({B}_{z}\) (red) and a clockwise vortex with negative \({B}_{z}\) (blue) in the right chamber. c–d, Corresponding numerical simulations in the hydrodynamic regime showing \({B}_{z}(x,y)\) (d) and \({B}_{z}(x,y)\) after the background subtraction (c). e–t, Same as (a–d) for \(\theta \,=\) 35°, 54°, 72°, and 90° samples.

Extended Data Fig. 6 Comparison between vorticity and vortical stream lines.

a, Numerical calculation of vorticity, \({\boldsymbol{\omega }}=\nabla \times {\boldsymbol{J}}\), normalized by \({I}_{0}/{W}^{2}\), in the hydrodynamic regime with \(D\,=\) 155 nm and \(\xi \,=\) 200 nm in \(\theta \,=\) 35° sample. The colors in the strip region, where the normalized vorticity is of the order of 1, are greatly saturated in order to show the vorticity in the chambers. b, Calculated laminar (red) and vortical (blue) streamlines in the same geometry. c–d, Same as (a–b) for \(\theta \,=\) 72° sample.

Extended Data Fig. 7 Schematic streamlines for purely ohmic, hydrodynamic and ballistic flow.

a, If the sample is purely ohmic, the current leaks into the chamber, forming a current dipole decaying as inverse distance squared. b, For a purely hydrodynamic flow, no laminar current (red) leaks from the strip into the chamber. Instead, a vortex forms in the vicinity of the aperture in the chamber (blue) in order to decrease the shear due to the gradient in the velocity profile. c, In a purely ballistic flow, only the geometry dictates the streamlines, producing a vortex (blue) whose center is positioned near the chamber center.

Extended Data Fig. 8 Fermi surface and electron-electron mean free path.

a, Fermi surface cut for \({k}_{z}=0\). Typical for a compensated semimetal, small electron and hole pockets appear close to the compensation point. If the hole density is slightly larger than the electron density, the Fermi surface features hole pockets near the Gamma point (red) and electron pockets (blue). b, \({l}_{ee}\) as calculated from Eq. 14 for 20 bands as a function of temperature (red points). For \(T=\) 145 K, we also show the values for a smaller number of bands. The blue lines denote upper and lower estimates for the \({T}^{-2}\) dependence of \({l}_{ee}\), where the lower one corresponds to the low-temperature asymptotics.

Extended Data Fig. 9 AFM images of WTe2 samples and additional vortical-to-laminar transitions.

a, AFM image of sample A analyzed in the main text with \(W=\) 550 nm, \(R\,=\) 900 nm, \(d\,=\) 48 nm, and aperture angles \(\theta \,=\) 20°, 35°, 54°, 72°, 90°, and 120°. b, Sample B used for Extended Data Fig. 9d–l with \(W=\) 350 nm, \(R=\) 450 nm, and\(\,d=\) 23 nm. c, Sample C with \(W=\) 770 nm and \(d\,=\) 30 nm, and \(R\,=\) 950, 725, and 500 nm (Extended Data Fig. 9m–r) and dual-drive geometry at the bottom part (Extended Data Fig. 10). d–l, Transition from single-vortex to two-vortex to laminar flow in sample B. d–f, Measurement of single vortex state in device B with \(\theta \,=\) 40° and corresponding simulations in the hydrodynamic regime with \(D\,=\) 123 nm and \(\xi \,=\) 200 nm. d, Measured current density \({J}_{y}(x,y)\) normalized by \({I}_{0}/W\) at \({I}_{0}\,=\) 25 µA. e, Simulated \({J}_{y}(x,y)\). f, Simulated current streamlines showing laminar (red) flow in the central strip and vortical flow (blue) in the chambers. g–i, Same as (d–f) for \(\theta \,=\) 60° showing banana-shaped vortex at the transition from a single to double-vortex state. j–l, Same as (d–f) for \(\theta \,=\) 100°, showing laminar flow. m–r, Vortical flow in sample C with different geometrical parameters. Current density \({J}_{x}(x,y)\) in sample C with \(W\,=\) 770 nm and \(d\,=\) 30 nm and various chamber parameters: \(\theta \,=\) 24° and \(R\,=\) 950 nm (m), \(\theta \,=\) 45° and \(R\,=\) 950 nm (n), \(\theta \,=\) 60° and \(R\,=\) 950 nm (o), \(\theta \,=\) 180° and \(R\,=\) 950 nm (p), \(\theta \,=\) 45° and \(R\,=\) 725 nm (q) and \(\theta \,=\) 60° and \(R\,=\) 500 nm (r). Laminar flow is observed in (p), while vortical flow is present in all the rest of the geometries.

Extended Data Fig. 10 Vortex–antivortex formation in dual-drive geometry.

a–f, Experimentally derived current densities \({J}_{y}(x,y)\) (top row) and \({J}_{x}(x,y)\) (bottom row) in Au and WTe2 samples. a, b, Current \({I}_{L}\,=\) 50 µA is driven in the up direction in the left strip with no current applied to the right strip resulting in a single vortex in the WTe2 chamber in b2. c, d, Counterpropagating currents \({I}_{L}=\) 50 µA and \({I}_{R}=-\)50 µA applied to the right and left strips, giving rise to a single massive vortex in d2. e, f, Copropagating currents \({I}_{L}=\) 50 µA and \({I}_{R}\,=\) 50 µA applied to both strips which generates a vortex–antivortex pair in f2. g–l, Numerical simulations of current densities Jy (x, y) (top row), Jx (x, y) (middle row) and the corresponding streamlines (bottom row) in the ohmic and hydrodynamic regimes for the three current configurations. The laminar streamlines are marked in red and the vortex streamlines in blue. The experimental data were acquired with pixel size of 10 nm, acquisition time of 40 ms/pixel, and image size of 600×350 pixels/image.

Supplementary information

Peer Review File

Supplementary Video 1

Simulations of vortical-to-laminar flow transition in the para-hydrodynamic regime versus θ. Numerical simulation of the current density Jx(x,y) (top right) and the corresponding streamlines (bottom right) in the double-chamber geometry when increasing the aperture angle θ for D/W = 0.28. The left panel shows the vortex stability phase diagram with no-stress boundary conditions as presented in Fig. 3a. The purple dot marks the value of the varying θ along the D/W = 0.28 line. For θ ≤ 54°, there is a single vortex in each chamber (blue streamlines). When increasing θ further, the laminar flow (red streamlines) splits the single vortex in each chamber into two vortices that are stable up to θ ≤ 60°. For θ > 60°, the laminar streamlines fill the entire area of the chambers.

Supplementary Video 2

Simulations of vortical-to-laminar flow transition in the quasi-ballistic regime versus θ. Numerical simulation is conducted for the current density Jx(x,y) (top right) and the corresponding streamlines (bottom right) in the double-chamber geometry when increasing θ for D/W = 1.5. The left panel shows the vortex stability phase diagram with no-stress boundary conditions as presented in Fig. 3a. The purple dot marks the value of the varying θ along the D/W = 1.5 line. With increasing θ, the laminar streamlines (red) gradually penetrate deeper into the chambers, distorting the vortices (blue streamlines) and pushing them towards the outer boundaries. The vortices become extinct at θ 150° without splitting into double vortices, as is the case in the hydrodynamic regime in Supplementary Video 1. For θ > 150°, the laminar streamlines fill the entire area of the chambers.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aharon-Steinberg, A., Völkl, T., Kaplan, A. et al. Direct observation of vortices in an electron fluid. Nature 607, 74–80 (2022). https://doi.org/10.1038/s41586-022-04794-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04794-y

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing