Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atomic-scale visualization of electronic fluid flow

Abstract

The most essential characteristic of any fluid is the velocity field, and this is particularly true for macroscopic quantum fluids1. Although rapid advances2,3,4,5,6,7 have occurred in quantum fluid velocity field imaging8, the velocity field of a charged superfluid—a superconductor—has never been visualized. Here we use superconducting-tip scanning tunnelling microscopy9,10,11 to image the electron-pair density and velocity fields of the flowing electron-pair fluid in superconducting NbSe2. Imaging of the velocity fields surrounding a quantized vortex12,13 finds electronic fluid flow with speeds reaching 10,000 km h–1. Together with independent imaging of the electron-pair density via Josephson tunnelling, we visualize the supercurrent density, which peaks above 3 × 107 A cm–2. The spatial patterns in electronic fluid flow and magneto-hydrodynamics reveal hexagonal structures coaligned to the crystal lattice and quasiparticle bound states14, as long anticipated15,16,17,18. These techniques pave the way for electronic fluid flow visualization studies of other charged quantum fluids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Model of quasiparticle and electron-pair tunnelling.
Fig. 2: Quasiparticle tunnelling and electron-pair tunnelling experiments.
Fig. 3: Radial dependence of ρS, Δ02, vS, jS and Φ.
Fig. 4: Visualizing electronic fluid flow.

Similar content being viewed by others

Data availability

All data are available in the main text, in the Supplementary Information and on Zenodo31. Additional information is available from the corresponding author upon reasonable request.

Code availability

The data analysis computer codes used in this study are available from the corresponding author upon reasonable request.

References

  1. Leggett, A. J. Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-Matter Systems (Oxford Univ. Press, 2006).

  2. Zhang, T. & Van Sciver, S. W. Large-scale turbulent flow around a cylinder in counterflow superfluid 4He (He(ii)). Nat. Phys. 1, 36–38 (2005).

    Article  CAS  Google Scholar 

  3. Bewley, G. P., Lathrop, D. P. & Sreenivasan, K. R. Visualization of quantized vortices. Nature 441, 588 (2006).

    Article  CAS  Google Scholar 

  4. Guo, W. et al. Visualization study of counterflow in superfluid 4He using metastable helium molecules. Phys. Rev. Lett. 105, 045301 (2010).

    Article  CAS  Google Scholar 

  5. Guo, W. et al. Visualization of two-fluid flows of superfluid helium-4. Proc. Natl Acad. Sci. USA 111, 4653–4658 (2014).

    Article  CAS  Google Scholar 

  6. Fisher, S. N. et al. Andreev reflection, a tool to investigate vortex dynamics and quantum turbulence in 3He-B. Proc. Natl Acad. Sci. USA 111, 4659–4666 (2014).

    Article  CAS  Google Scholar 

  7. Kumar, A. et al. Minimally destructive, Doppler measurement of a quantized flow in a ring-shaped Bose–Einstein condensate. N. J. Phys. 19, 025001 (2016).

    Article  Google Scholar 

  8. Seo, S. W. et al. Observation of vortex-antivortex pairing in decaying 2D turbulence of a superfluid gas. Sci. Rep. 7, 4587 (2017).

    Article  Google Scholar 

  9. Hamidian, M. H. et al. Detection of a Cooper-pair density wave in Bi2Sr2CaCu2O8+x. Nature 532, 343–347 (2016).

    Article  CAS  Google Scholar 

  10. Cho, D. et al. A strongly inhomogeneous superfluid in an iron-based superconductor. Nature 571, 541–545 (2019).

    Article  CAS  Google Scholar 

  11. Liu, X., Chong, Y. X., Sharma, R. & Davis, J. C. S. Discovery of a Cooper-pair density wave state in a transition-metal dichalcogenide. Science 372, 1447–1452 (2021).

    Article  CAS  Google Scholar 

  12. Abrikosov, A. A. The magnetic properties of superconducting alloys. J. Phys. Chem. Solids 2, 199–208 (1957).

    Article  CAS  Google Scholar 

  13. Rosenstein, B. & Li, D. Ginzburg-Landau theory of type II superconductors in magnetic field. Rev. Mod. Phys. 82, 109–168 (2010).

    Article  CAS  Google Scholar 

  14. Hess, H. F., Robinson, R. B. & Waszczak, J. V. Vortex-core structure observed with a scanning tunneling microscope. Phys. Rev. Lett. 64, 2711–2714 (1990).

    Article  CAS  Google Scholar 

  15. Klein, U. Microscopic calculations on the vortex state of type II superconductors. J. Low. Temp. Phys. 69, 1–37 (1987).

    Article  Google Scholar 

  16. Norman, M. R. Mean-field superconductivity in a strong magnetic field. Physica C 196, 43–47 (1992).

    Article  CAS  Google Scholar 

  17. Gygi, F. & Schlüter, M. Self-consistent electronic structure of a vortex line in a type-II superconductor. Phys. Rev. B 43, 7609–7621 (1991).

    Article  CAS  Google Scholar 

  18. Rainer, D., Sauls, J. A. & Waxman, D. Current carried by bound states of a superconducting vortex. Phys. Rev. B 54, 10094–10106 (1996).

    Article  CAS  Google Scholar 

  19. Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).

    Article  CAS  Google Scholar 

  20. Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene. Science 351, 1058–1061 (2016).

    Article  CAS  Google Scholar 

  21. Moll, P. J. W. et al. Evidence for hydrodynamic electron flow in PdCoO2. Science 351, 1061–1064 (2016).

    Article  CAS  Google Scholar 

  22. Levitov, L. & Falkovich, G. Electron viscosity, current vortices and negative nonlocal resistance in graphene. Nat. Phys. 12, 672–676 (2016).

    Article  CAS  Google Scholar 

  23. Berdyugin, A. I. et al. Measuring Hall viscosity of graphene’s electron fluid. Science 364, 162–165 (2019).

    Article  CAS  Google Scholar 

  24. Yip, S. K. & Sauls, J. A. Nonlinear Meissner effect in CuO superconductors. Phys. Rev. Lett. 69, 2264–2267 (1992).

    Article  CAS  Google Scholar 

  25. Volovik, G. E. Superconductivity with lines of GAP nodes: density of states in the vortex. J. Exp. Theor. Phys. Lett. 58, 469–473 (1993).

    Google Scholar 

  26. Wu, H. & Sauls, J. A. Majorana excitations, spin and mass currents on the surface of topological superfluid 3He-B. Phys. Rev. B 88, 184506 (2013).

    Article  Google Scholar 

  27. Anchenko, Y. M. I. & Zil’Berman, L. A. The Josephson effect in small tunnel contacts. J. Exp. Theor. Phys. 55, 2395–2402 (1969).

    Google Scholar 

  28. Ingold, G.-L., Grabert, H. & Eberhardt, U. Electron-pair current through ultrasmall Josephson junctions. Phys. Rev. B 50, 395–402 (1994).

    Article  CAS  Google Scholar 

  29. Naaman, O., Teizer, W. & Dynes, R. C. Fluctuation dominated Josephson tunneling with a scanning tunneling microscope. Phys. Rev. Lett. 87, 097004 (2001).

    Article  CAS  Google Scholar 

  30. Fulde, P. in Tunneling Phenomena in Solids (eds Burstein, E. & Lundqvist, S.) Ch. 29 (Springer, 1969).

  31. Liu, X., Chong, Y. X., Sharma, R. & Davis, J. C. S. Data associated with ‘Atomic-scale visualization of electronic fluid flow’. Zenodo https://doi.org/10.5281/zenodo.5048540 (2021).

Download references

Acknowledgements

We thank J. E. Hoffman, H. Suderow and Z. Hadzibabic for helpful discussions and advice. X.L. acknowledges support from the Kavli Institute at Cornell. X.L., Y.X.C., R.S. and J.C.S.D. acknowledge support from the Moore Foundation’s EPiQS Initiative through grant GBMF9457. J.C.S.D. acknowledges support from the Royal Society through award R64897, from Science Foundation Ireland under award SFI 17/RP/5445 and from the European Research Council under award DLV-788932.

Author information

Authors and Affiliations

Authors

Contributions

X.L and Y.X.C. carried out the experiments. X.L., Y.X.C. and R.S. developed and implemented the analysis. J.C.S.D. conceived and directed the project. The paper reflects the contributions and ideas of all authors.

Corresponding author

Correspondence to J. C. Séamus Davis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Wei Guo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–7 and Figs. 1–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Chong, Y.X., Sharma, R. et al. Atomic-scale visualization of electronic fluid flow. Nat. Mater. 20, 1480–1484 (2021). https://doi.org/10.1038/s41563-021-01077-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01077-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing