Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of ultracold atomic bubbles in orbital microgravity

Abstract

Substantial leaps in the understanding of quantum systems have been driven by exploring geometry, topology, dimensionality and interactions in ultracold atomic ensembles1,2,3,4,5,6. A system where atoms evolve while confined on an ellipsoidal surface represents a heretofore unexplored geometry and topology. Realizing an ultracold bubble—potentially Bose–Einstein condensed—relates to areas of interest including quantized-vortex flow constrained to a closed surface topology, collective modes and self-interference via bubble expansion7,8,9,10,11,12,13,14,15,16,17. Large ultracold bubbles, created by inflating smaller condensates, directly tie into Hubble-analogue expansion physics18,19,20. Here we report observations from the NASA Cold Atom Lab21 facility onboard the International Space Station of bubbles of ultracold atoms created using a radiofrequency-dressing protocol. We observe bubble configurations of varying size and initial temperature, and explore bubble thermodynamics, demonstrating substantial cooling associated with inflation. We achieve partial coverings of bubble traps greater than one millimetre in size with ultracold films of inferred few-micrometre thickness, and we observe the dynamics of shell structures projected into free-evolving harmonic confinement. The observations are among the first measurements made with ultracold atoms in space, using perpetual freefall to explore quantum systems that are prohibitively difficult to create on Earth. This work heralds future studies (in orbital microgravity) of the Bose–Einstein condensed bubble, the character of its excitations and the role of topology in its evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Creating ultracold bubbles.
Fig. 2: Ultracold bubble observations and modelling.
Fig. 3: Thermometry of bubbles.
Fig. 4: Evolution on removal of dressing.

Similar content being viewed by others

Data availability

The datasets generated and analysed in Methods are available from the corresponding author upon reasonable request. All NASA CAL data are on a schedule for public availability through the NASA Physical Science Informatics (PSI) website (https://www.nasa.gov/PSI).

Code availability

Calculation and analysis codes from the Methods are available upon reasonable request from the corresponding author.

References

  1. Hadzibabic, Z., Kruger, P., Cheneau, M., Battelier, B. & Dalibard, J. Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas. Nature 441, 1118–1121 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Cladé, P., Ryu, C., Ramanathan, A., Helmerson, K. & Phillips, W. D. Observation of a 2D Bose gas: from thermal to quasicondensate to superfluid. Phys. Rev. Lett. 102, 170401 (2009).

    Article  ADS  PubMed  CAS  Google Scholar 

  3. Kinoshita, T., Wenger, T. & Weiss, D. S. Observation of a one-dimensional Tonks–Girardeau gas. Science 305, 1125–1128 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Paredes, B. et al. Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Eckel, S. et al. Hysteresis in a quantized superfluid ‘atomtronic’ circuit. Nature 506, 200–203 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

    Article  ADS  CAS  Google Scholar 

  7. Tononi, A., Pelster, A. & Salasnich, L. Topological superfluid transition in bubble-trapped condensates. Phys. Rev. Res. 4, 013122 (2022).

    Article  CAS  Google Scholar 

  8. Tononi, A., Cinti, F. & Salasnich, L. Quantum bubbles in microgravity. Phys. Rev. Lett. 125, 010402 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Tononi, A. & Salasnich, L. Bose–Einstein condensation on the surface of a sphere. Phys. Rev. Lett. 123, 160403 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Padavić, K., Sun, K., Lannert, C. & Vishveshwara, S. Vortex–antivortex physics in shell-shaped Bose–Einstein condensates. Phys. Rev. A 102, 043305 (2020).

    Article  ADS  Google Scholar 

  11. Sun, K., Padavić, K., Yang, F., Vishveshwara, S. & Lannert, C. Static and dynamic properties of shell-shaped condensates. Phys. Rev. A 98, 013609 (2018).

    Article  ADS  CAS  Google Scholar 

  12. Padavić, K., Sun, K., Lannert, C. & Vishveshwara, S. Physics of hollow Bose–Einstein condensates. Europhys. Lett. 120, 20004 (2017).

    Article  ADS  CAS  Google Scholar 

  13. Lannert, C., Wei, T. C. & Vishveshwara, S. Dynamics of condensate shells: collective modes and expansion. Phys. Rev. A 75, 013611 (2007).

    Article  ADS  CAS  Google Scholar 

  14. Móller, N. S., Santos, F. E. Ad, Bagnato, V. S. & Pelster, A. Bose–Einstein condensation on curved manifolds. New J. Phys. 22, 063059 (2020).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. Bereta, S. J., Caracanhas, M. A. & Fetter, A. L. Superfluid vortex dynamics on a spherical film. Phys. Rev. A 103, 053306 (2021).

    Article  ADS  CAS  Google Scholar 

  16. Zhang, J. & Ho, T.-L. Potential scattering on a spherical surface. J. Phys. B 51, 115301 (2018).

    Article  ADS  CAS  Google Scholar 

  17. Mitra, K., Williams, C.J, & Sá de Melo, C. A. R. Superfluid and Mott-insulating shells of bosons in harmonically confined optical lattices. Phys. Rev. A 77, 033607 (2008).

    Article  ADS  CAS  Google Scholar 

  18. Banik, S. et al. Accurate determination of Hubble attenuation and amplification in expanding and contracting cold-atom universes. Phys. Rev. Lett.128, 090401 (2022).

  19. Bhardwaj, A., Vaido, D. & Sheehy, D. E. Inflationary dynamics and particle production in a toroidal Bose–Einstein condensate. Phys. Rev. A 103, 023322 (2021).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  20. Eckel, S., Kumar, A., Jacobson, T., Spielman, I. B. & Campbell, G. K. A rapidly expanding Bose-Einstein condensate: an expanding universe in the lab. Phys. Rev. X 8, 021021 (2018).

    CAS  Google Scholar 

  21. Aveline, D. C. et al. Observation of Bose–Einstein condensates in an Earth-orbiting research lab. Nature 582, 193–197 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Zobay, O. & Garraway, B. M. Two-dimensional atom trapping in field-induced adiabatic potentials. Phys. Rev. Lett. 86, 1195–1198 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Elliott, E. R., Krutzik, M. C., Williams, J. R., Thompson, R. J. & Aveline, D. C. NASA’s Cold Atom Lab (CAL): system development and ground test status. npj Microgravity 4, 16 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  24. Lundblad, N. et al. Shell potentials for microgravity Bose–Einstein condensates. npj Microgravity 5, 30 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zobay, O. & Garraway, B. M. Properties of coherent matter-wave bubbles. Acta Phys. Slovaca 50, 359–368 (2000).

    Google Scholar 

  26. Zobay, O. & Garraway, B. Atom trapping and two-dimensional Bose–Einstein condensates in field-induced adiabatic potentials. Phys. Rev. A 69, 023605 (2004).

    Article  ADS  CAS  Google Scholar 

  27. Perrin, H. & Garraway, B. M. Trapping atoms with radio frequency adiabatic potentials. Adv. At. Mol. Opt. Phys. 66, 181–262 (2017).

    Article  ADS  Google Scholar 

  28. Garraway, B. M. & Perrin, H. Recent developments in trapping and manipulation of atoms with adiabatic potentials. J. Phys. B 49, 172001 (2016).

    Article  ADS  CAS  Google Scholar 

  29. White, M., Gao, H., Pasienski, M. & DeMarco, B. Bose–Einstein condensates in rf-dressed adiabatic potentials. Phys. Rev. A 74, 023616 (2006).

    Article  ADS  CAS  Google Scholar 

  30. Merloti, K. et al. A two-dimensional quantum gas in a magnetic trap. New J. Phys. 15, 033007 (2013).

    Article  ADS  Google Scholar 

  31. Colombe, Y. et al. Ultracold atoms confined in rf-induced two-dimensional trapping potentials. Europhys. Lett. 67, 593–599 (2004).

    Article  ADS  CAS  Google Scholar 

  32. Shibata, K., Ikeda, H., Suzuki, R. & Hirano, T. Compensation of gravity on cold atoms by a linear optical potential. Phys. Rev. Res. 2, 013068 (2020).

    Article  CAS  Google Scholar 

  33. Guo, Y. et al. An annular quantum gas induced by dimensional reduction on a shell. Preprint at https://arxiv.org/abs/2105.12981 (2021).

  34. Meister, M., Roura, A., Rasel, E. M. & Schleich, W. P. The space atom laser: an isotropic source for ultra-cold atoms in microgravity. New J. Phys. 21, 013039 (2019).

    Article  ADS  CAS  Google Scholar 

  35. Sackett, C. A., Lam, T. C., Stickney, J. C. & Burke, J. H. Extreme adiabatic expansion in micro-gravity: modeling for the Cold Atomic Laboratory. Microgravity Sci. Technol. 30, 155–163 (2017).

    Article  ADS  Google Scholar 

  36. Pollard, A. R., Moan, E. R., Sackett, C. A., Elliott, E. R. & Thompson, R. J. Quasi-adiabatic external state preparation of ultracold atoms in microgravity. Microgravity Sci. Technol. 32, 1175–1184 (2020).

    Article  ADS  CAS  Google Scholar 

  37. Putra, A., Campbell, D. L., Price, R. M., De, S. & Spielman, I. B. Optimally focused cold atom systems obtained using density–density correlations. Rev. Sci. Instrum. 85, 013110 (2014).

    Article  ADS  PubMed  CAS  Google Scholar 

  38. Pinkse, P. W. H. et al. Adiabatically changing the phase-space density of a trapped Bose gas. Phys. Rev. Lett. 78, 990–993 (1997).

    Article  ADS  CAS  Google Scholar 

  39. Morizot, O. et al. Influence of the radio-frequency source properties on RF-based atom traps. Eur. Phys. J. D 47, 209–214 (2008).

    Article  ADS  CAS  Google Scholar 

  40. Rhyno, B., Lundblad, N., Aveline, D. C., Lannert, C. & Vishveshwara, S. Thermodynamics in expanding shell-shaped Bose–Einstein condensates. Phys. Rev. A 104, 063310 (2021).

    Article  ADS  CAS  Google Scholar 

  41. Dziarmaga, J. Dynamics of a quantum phase transition and relaxation to a steady state. Adv. Phys. 59, 1063–1189 (2010).

    Article  ADS  CAS  Google Scholar 

  42. Lin, Y.-J., Perry, A., Compton, R., Spielman, I. & Porto, J. Rapid production of 87Rb Bose-Einstein condensates in a combined magnetic and optical potential. Phys. Rev. A 79, 063631 (2009).

    Article  ADS  CAS  Google Scholar 

  43. Stamper-Kurn, D. M. et al. Reversible formation of a Bose–Einstein condensate. Phys. Rev. Lett. 81, 2194–2197 (1998).

    Article  ADS  CAS  Google Scholar 

  44. Weber, T., Herbig, J., Mark, M., Nagerl, H.-C. & Grimm, R. Bose–Einstein condensation of cesium. Science 299, 232–235 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Roberts, J. L. et al. Controlled collapse of a Bose–Einstein condensate. Phys. Rev. Lett. 86, 4211–4214 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Sinuco-Leon, G. A. et al. Microwave spectroscopy of radio-frequency-dressed Rb87. Phys. Rev. A 100, 053416 (2019).

    Article  ADS  CAS  Google Scholar 

  47. Fancher, C. T., Pyle, A. J., Rotunno, A. P. & Aubin, S. Microwave ac Zeeman force for ultracold atoms. Phys. Rev. A 97, 043430 (2018).

    Article  ADS  CAS  Google Scholar 

  48. Frye, K. et al. The Bose–Einstein Condensate and Cold Atom Laboratory. EPJ Quantum Technol. 8, 1 (2021).

    Article  Google Scholar 

  49. Alzar, C. G., Perrin, H., Garraway, B. & Lorent, V. Evaporative cooling in a radio-frequency trap. Phys. Rev. A 74, 053413 (2006).

    Article  ADS  CAS  Google Scholar 

  50. Caracanhas, M. A., Massignan, P. & Fetter, A. L. Superfluid vortex dynamics on an ellipsoid and other surfaces of revolution. Phys. Rev. A 105, 023307 (2022).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  51. Luksch, K. et al. Probing multiple-frequency atom–photon interactions with ultracold atoms. New J. Phys. 21, 073067 (2019).

    Article  ADS  CAS  Google Scholar 

  52. Harte, T. L. et al. Ultracold atoms in multiple radio-frequency dressed adiabatic potentials. Phys. Rev. A 97, 013616 (2018).

    Article  ADS  CAS  Google Scholar 

  53. Wolf, A. et al. Shell-shaped Bose–Einstein condensates realized with dual-species mixtures. Preprint at https://arxiv.org/abs/2110.15247 (2021).

  54. Andriati, A., Brito, L., Tomio, L. & Gammal, A. Stability of a Bose-condensed mixture on a bubble trap. Phys. Rev. A 104, 033318 (2021).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  55. Lachmann, M. D. et al. Ultracold atom interferometry in space. Nat. Commun. 12, 1317 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pethick, C. J. & Smith, H. Bose–Einstein Condensation in Dilute Gases (Cambridge Univ. Press, 2008).

  57. Pitaevskii, L. & Stringari, S. Bose–Einstein Condensation and Superfluidity (Oxford Univ. Press, 2016).

  58. Bagnato, V., Pritchard, D. E. & Kleppner, D. Bose–Einstein condensation in an external potential. Phys. Rev. A 35, 4354–4358 (1987).

    Article  ADS  CAS  Google Scholar 

  59. Houbiers, M., Stoof, H. T. C. & Cornell, E. A. Critical temperature of a trapped Bose gas: mean-field theory and fluctuations. Phys. Rev. A 56, 2041–2045 (1997).

    Article  ADS  CAS  Google Scholar 

  60. Burrows, K. A., Perrin, H. & Garraway, B. M. Nonadiabatic losses from radio-frequency-dressed cold-atom traps: beyond the Landau–Zener model. Phys. Rev. A 96, 023429 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the NASA/JPL Cold Atom Lab team for their support. Designed, managed and operated by Jet Propulsion Laboratory, the Cold Atom Lab is sponsored by the Biological and Physical Sciences Division of NASA’s Science Mission Directorate at the agency’s headquarters in Washington and the International Space Station Program at NASA’s Johnson Space Center in Houston. We also thank B. Garraway and E. Bentine for input.

Author information

Authors and Affiliations

Authors

Contributions

R.A.C. designed experiments, guided data collection and wrote analysis software. D.C.A. conceived the study, designed experiments, guided data collection, operated the CAL instrument, provided scientific guidance and prepared the manuscript. B.R. performed modelling calculations, prepared the manuscript and provided theory support. S.V. and C.L. conceived the study, guided model calculations, and provided scientific guidance and theory support. J.D.M. prepared the manuscript and wrote analysis software. E.R.E. and J.R.W. and R.J.T. operated the CAL instrument and guided data collection; R.J.T. and J.R.W. also provided guidance as CAL project scientists. N.L. conceived the study, designed experiments, guided data collection, performed data analysis and prepared the manuscript. All authors read, edited and approved the final manuscript.

Corresponding author

Correspondence to N. Lundblad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Chandra Raman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Thermometry fitting results.

Cloud size versus time-of-flight fits for initial temperatures as set by rf evaporation, with frequency values given by a, 5.1 MHz, b, 5.0 MHz, c, 4.93 MHz, and d, 4.855 MHz, corresponding to the temperature data in Fig. 3a–d. Error bars represent standard errors.

Extended Data Fig. 2 Halo rejection.

Details of mechanism for rejecting |F = 2, m = 0 halos originating in evaporative cooling, which otherwise would distort thermometry fits of shell structures relevant main text Fig. 3 in the main text. a, To proceed we first find (for a typical partially-condensed cloud) the approximate center of the halo marked by a vertical line. This location guides our nearby placement of a truncation region in the fits shown in bd for three different use cases: b, a cold shell of moderate size and short TOF; c, a cold shell of moderate size and long TOF; d, a warmer, higher atom number shell of moderate size and short TOF. Truncation of a halo-dominant region improves fit capture of relevant shell features, with results shown in dashed red lines. More detail of the halo nature can be found in ref. 21.

Extended Data Fig. 3 Effects of ramp-time variation.

a, Ramp time is varied 100–400 ms, with a 1,000-point frequency ramp extending 200 kHz upward from an initial frequency of 2.05 MHz + Δ, corresponding to variation in ramp speed 0.5–2.0 kHz/ms. Error bars (where visible) represent standard errors. b, Absorption imaging of Δ = +30 kHz clouds associated with marked ramp times (associated with red points above). For this dataset initial cloud temperature was set slightly below Tc, similar to that used in Fig. 3d.

Extended Data Fig. 4 Effects of graining variation.

a, Graining of the dressing ramp is varied, with resulting dressed-sample thermometry plotted as a function of the number of frequency steps. Error bars (where visible) represent standard errors. All dressing ramps extended 600 kHz upward from an initial frequency of 1.65 MHz + Δ, over 400 ms (ramp speed 1.5 kHz/ms), thus varying the step size from 300–1200 Hz. For this dataset initial cloud temperature was set significantly above Tc, similar to that used in Fig. 3b. b, Dressed (Δ = +550 kHz, i.e. a ramp 2.2–2.8 MHz) clouds at short (2.6 ms) TOF associated with each rf frequency step graining; note qualitative difference associated with 500-point graining.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carollo, R.A., Aveline, D.C., Rhyno, B. et al. Observation of ultracold atomic bubbles in orbital microgravity. Nature 606, 281–286 (2022). https://doi.org/10.1038/s41586-022-04639-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04639-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing