Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Polariton Bose–Einstein condensate from a bound state in the continuum

Abstract

Bound states in the continuum (BICs)1,2,3 are peculiar topological states that, when realized in a planar photonic crystal lattice, are symmetry-protected from radiating in the far field despite lying within the light cone4. These BICs possess an invariant topological charge given by the winding number of the polarization vectors5, similar to vortices in quantum fluids such as superfluid helium and atomic Bose–Einstein condensates. In spite of several reports of optical BICs in patterned dielectric slabs with evidence of lasing, their potential as topologically protected states with theoretically infinite lifetime has not yet been fully exploited. Here we show non-equilibrium Bose–Einstein condensation of polaritons—hybrid light–matter excitations—occurring in a BIC thanks to its peculiar non-radiative nature, which favours polariton accumulation. The combination of the ultralong BIC lifetime and the tight confinement of the waveguide geometry enables the achievement of an extremely low threshold density for condensation, which is reached not in the dispersion minimum but at a saddle point in reciprocal space. By bridging bosonic condensation and symmetry-protected radiation eigenmodes, we reveal ways of imparting topological properties onto macroscopic quantum states with unexplored dispersion features. Such an observation may open a route towards energy-efficient polariton condensation in cost-effective integrated devices, ultimately suited for the development of hybrid light–matter optical circuits.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Polariton BIC.
Fig. 2: Polariton BIC condensation.
Fig. 3: Coherence and phase singularity of polariton BIC condensate.
Fig. 4: Polarization vortex of polariton BEC in a BIC.

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available in the Open Science Framework (OSF) repository, https://osf.io/x5nz3/?view_only=fada1eca509141eeb993453e2388a229. Data and any other information are also available upon reasonable request.

References

  1. von Neumann, J. & Wigner, E. P. In The Collected Works of Eugene Paul Wigner (ed. Wightman, A. S.) 291–293 (Springer, 1993).

  2. Friedrich, H. & Wintgen, D. Interfering resonances and bound states in the continuum. Phys. Rev. A. 32, 3231–3242 (1985).

    Article  CAS  ADS  Google Scholar 

  3. Capasso, F. et al. Observation of an electronic bound state above a potential well. Nature 358, 565–567 (1992).

    Article  CAS  ADS  Google Scholar 

  4. Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Bound states in the continuum. Nat. Rev. Mater 1, 16048 (2016).

    Article  CAS  ADS  Google Scholar 

  5. Zhen, B., Hsu, C. W., Lu, L., Stone, A. D. & Soljačić, M. Topological nature of optical bound states in the continuum. Phys. Rev. Lett. 113, 257401 (2014).

    Article  ADS  Google Scholar 

  6. Mermet-Lyaudoz, R. et al. Realization of bound state in the continuum induced by vertical symmetry breaking in photonic lattice. Preprint at https://arxiv.org/abs/1905.03868 (2019).

  7. Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).

    Article  CAS  ADS  Google Scholar 

  8. Kavokin, A., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities 2nd edn (Oxford Science, 2008).

  9. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  CAS  ADS  Google Scholar 

  10. Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).

    Article  CAS  ADS  Google Scholar 

  11. Dusel, M. et al. Room temperature organic exciton–polariton condensate in a lattice. Nat. Commun. 11, 2863 (2020).

    Article  CAS  ADS  Google Scholar 

  12. Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009).

    Article  CAS  Google Scholar 

  13. Lerario, G. et al. Room-temperature superfluidity in a polariton condensate. Nat. Phys. 13, 837–841 (2017).

    Article  CAS  Google Scholar 

  14. Lagoudakis, K. G. et al. Quantized vortices in an exciton–polariton condensate. Nat. Phys. 4, 706–710 (2008).

    Article  CAS  Google Scholar 

  15. Lagoudakis, K. G. et al. Observation of half-quantum vortices in an exciton-polariton condensate. Science 326, 974–976 (2009).

    Article  CAS  ADS  Google Scholar 

  16. Sanvitto, D. et al. Persistent currents and quantized vortices in a polariton superfluid. Nat. Phys. 6, 527–533 (2010).

    Article  CAS  Google Scholar 

  17. Amo, A. et al. Polariton superfluids reveal quantum hydrodynamic solitons. Science 332, 1167–1170 (2011).

    Article  CAS  ADS  Google Scholar 

  18. Walker, P. M. et al. Dark solitons in high velocity waveguide polariton fluids. Phys. Rev. Lett. 119, 097403 (2017).

    Article  CAS  ADS  Google Scholar 

  19. Liu, W. et al. Generation of helical topological exciton-polaritons. Science 370, 600–604 (2020).

    Article  MathSciNet  CAS  Google Scholar 

  20. Walker, P. M. et al. Exciton polaritons in semiconductor waveguides. Appl. Phys. Lett. 102, 012109 (2013).

    Article  ADS  Google Scholar 

  21. Rosenberg, I., Mazuz-Harpaz, Y., Rapaport, R., West, K. & Pfeiffer, L. Electrically controlled mutual interactions of flying waveguide dipolaritons. Phys. Rev. B 93, 195151 (2016).

    Article  ADS  Google Scholar 

  22. Rosenberg, I. et al. Strongly interacting dipolar-polaritons. Sci. Adv. 4, eaat8880 (2018).

    Article  CAS  ADS  Google Scholar 

  23. Togan, E., Lim, H.-T., Faelt, S., Wegscheider, W. & Imamoglu, A. Enhanced interactions between dipolar polaritons. Phys. Rev. Lett. 121, 227402 (2018).

    Article  CAS  ADS  Google Scholar 

  24. Suàrez-Forero, D. G. et al. Enhancement of parametric effects in polariton waveguides induced by dipolar interactions. Phys. Rev. Lett. 126, 137401 (2021).

    Article  ADS  Google Scholar 

  25. Turnbull, G. A., Andrew, P., Jory, M. J., Barnes, W. L. & Samuel, I. D. W. Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser. Phys. Rev. B 64, 125122 (2001).

    Article  ADS  Google Scholar 

  26. Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).

    Article  CAS  ADS  Google Scholar 

  27. Doeleman, H. M., Monticone, F., den Hollander, W., Alù, A. & Koenderink, A. F. Experimental observation of a polarization vortex at an optical bound state in the continuum. Nat. Photon. 12, 397–401 (2018).

    Article  CAS  ADS  Google Scholar 

  28. Gerace, D. & Andreani, L. C. Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs. Phys. Rev. E. 69, 056603 (2004).

    Article  ADS  Google Scholar 

  29. Koshelev, K. L., Sychev, S. K., Sadrieva, Z. F., Bogdanov, A. A. & Iorsh, I. V. Strong coupling between excitons in transition metal dichalcogenides and optical bound states in the continuum. Phys. Rev. B. 98, 161113 (2018).

    Article  CAS  ADS  Google Scholar 

  30. Kravtsov, V. et al. Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum. Light 9, 56 (2020).

    Article  CAS  Google Scholar 

  31. Lu, L. et al. Engineering a light–matter strong coupling regime in perovskite-based plasmonic metasurface: quasi-bound state in the continuum and exceptional points. Photon. Res. 8, A91–A100 (2020).

    Article  CAS  Google Scholar 

  32. Zhang, Y. et al. Observation of polarization vortices in momentum space. Phys. Rev. Lett. 120, 186103 (2018).

    Article  CAS  ADS  Google Scholar 

  33. Zhang, L., Gogna, R., Burg, W., Tutuc, E. & Deng, H. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nat. Commun. 9, 713 (2018).

    Article  ADS  Google Scholar 

  34. Dang, N. H. M. et al. Tailoring dispersion of room-temperature exciton-polaritons with perovskite-based subwavelength metasurfaces. Nano Lett. 20, 2113–2119 (2020).

    Article  CAS  ADS  Google Scholar 

  35. Chen, Y. et al. Metasurface integrated monolayer exciton polariton. Nano Lett. 20, 5292–5300 (2020).

    Article  CAS  ADS  Google Scholar 

  36. Sanvitto, D. et al. Rapid radiative decay of charged excitons. Phys. Rev. B 62, R13294–R13297 (2000).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank P. Cazzato for technical support. We are grateful to L. C. Andreani for discussions and support, and R. Rapaport for discussions and for sharing information about the sample design. We acknowledge the Italian Ministry of University (MIUR) for funding through the PRIN project ‘Interacting Photons in Polariton Circuits’ – INPhoPOL (grant 2017P9FJBS) and for the FISR 2020 – COVID, project ‘Sensore elettro-ottico a guida d'onda basato sull'interazione luce-materia’ (WaveSense), FISR2020IP-04324. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract number DE-AC02-05CH11231. We thank S. Dhuey at the Molecular Foundry for assistance with the electron-beam lithography. We acknowledge the project FISR – CNR ‘Tecnopolo di nanotecnologia e fotonica per la medicina di precisione’ – CUP B83B17000010001 and ‘Progetto Tecnopolo per la Medicina di precisione’, Deliberazione della Giunta Regionale number 2117 del 21/11/2018. We also acknowledge ‘Hardware implementation of a polariton neural network for neuromorphic computing’, Joint Bilateral Agreement CNR–RFBR (Russian Foundation for Basic Reaserach) – Triennal Programme 2021–2023. This research is funded in part by the Gordon and Betty Moore Foundation’s EPiQS Initiative, grant GBMF9615 to L.P., and by the National Science Foundation MRSEC grant DMR 2011750 to Princeton University. H.S.N. is partly supported by the French National Research Agency (ANR) under the project POPEYE (ANR-17-CE24-0020), the IDEXLYON from Université de Lyon, Scientific Breakthrough project TORE within the Programme Investissements d’Avenir (ANR-19-IDEX0005) and the Vingroup Innovation Foundation (VINIF) annual research grant programme under project code VINIF.2021.DA00169. H.S.N. dedicates this work to V. H. Nguyen.

Author information

Authors and Affiliations

Authors

Contributions

V.A., D.S. and D.G. initiated the research project, V.A. and F.R. designed the grating structures with input from H.S.N.; F.R. processed the sample, growth was performed by K.B. and L.P.; V.A., F.R., A.G., D.G.S.-F., M.E.-T., H.S.N. and D.B. realized the experiments and carried out the data analysis; H.S.N., S.Z. and D.G. developed the theoretical background and performed the FDTD simulations. V.A., H.S.N., D.G. and D.S. drafted the manuscript, and all the authors were involved in the discussion of results and the final manuscript editing.

Corresponding authors

Correspondence to D. Gerace or D. Sanvitto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Michael Fraser and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Tuning the properties of the polariton BIC.

a, c, Grating pitch 240 nm and fill factors 0.5 (a) and 0.6 (c). b, d, Pitch 244 nm and fill factors 0.5 (b) and 0.6 (d).

Extended Data Fig. 2 Effect of the spot size.

a, b, Polariton condensation under a pumping spot of size S ≈ 30 μm; for pumping densities well above the condensation threshold two modes are visible: M0 and M1, with an energy separation of about 1 meV. c, d, Polariton condensation under a pumping spot of size S ≈ 120 μm; for pumping densities well above the condensation threshold three modes are visible: M0, M1 and M2, with an energy separation of about 0.3 meV. PL, photoluminescence. Light intensity increases from dark to light colours in Extended Data Figs. 2–4.

Extended Data Fig. 3 Polariton propagation.

a, Excitation scheme for propagation measurements; the red spot outside the grating represents the non-resonant exciting laser beam. b, Polariton dispersion obtained by pumping the sample with the scheme in a; only polaritons propagating upwards reach the grating. c, Polariton group velocity extracted from the fitted dispersion in b.

Extended Data Fig. 4 Energy- and space-resolved emission of the gratings of Extended Data Fig. 3b.

By fitting the emission at each energy with an exponential decay we can extract the polariton decay length. Here only a portion of the bright mode is visible as it has been filtered in reciprocal space.

Extended Data Fig. 5 Polariton lifetimes.

Polariton lifetimes for two gratings having a polariton BIC at excitonic fractions 0.25 (left) and 0.5 (right). The black dashed lines represent the energy of the BIC in each case. The error bars result from the errors in fitting the exponential decay of polariton propagation in real space and from the fitting of the group velocity; see Extended Data Fig. 3.

Extended Data Fig. 6 Coherence measurements.

a, Scheme of the experimental set-up used to measure the interferogram shown in b.

Extended Data Fig. 7 Polarization properties of the BIC and the bright states.

Measured polarization parameters from the BIC and the bright state. ϕ is the polarization axis direction and χ is the ellipticity.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Figures and Supplementary Equations.

Supplementary Video 1

Temporal dynamics of the polariton condensate from the BIC at a power excitation density close to the condensation threshold.

Supplementary Video 2

Temporal dynamics of the polariton condensate from the BIC at a power excitation density above the condensation threshold.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardizzone, V., Riminucci, F., Zanotti, S. et al. Polariton Bose–Einstein condensate from a bound state in the continuum. Nature 605, 447–452 (2022). https://doi.org/10.1038/s41586-022-04583-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04583-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing