Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mobility gradients yield rubbery surfaces on top of polymer glasses



Many emerging materials, such as ultrastable glasses1,2 of interest for phone displays and OLED television screens, owe their properties to a gradient of enhanced mobility at the surface of glass-forming liquids. The discovery of this surface mobility enhancement3,4,5 has reshaped our understanding of the behaviour of glass formers and of how to fashion them into improved materials. In polymeric glasses, these interfacial modifications are complicated by the existence of a second length scale—the size of the polymer chain—as well as the length scale of the interfacial mobility gradient6,7,8,9. Here we present simulations, theory and time-resolved surface nano-creep experiments to reveal that this two-scale nature of glassy polymer surfaces drives the emergence of a transient rubbery, entangled-like surface behaviour even in polymers comprised of short, subentangled chains. We find that this effect emerges from superposed gradients in segmental dynamics and chain conformational statistics. The lifetime of this rubbery behaviour, which will have broad implications in constraining surface relaxations central to applications including tribology, adhesion, and surface healing of polymeric glasses, extends as the material is cooled. The surface layers suffer a general breakdown in time−temperature superposition (TTS), a fundamental tenet of polymer physics and rheology. This finding may require a reevaluation of strategies for the prediction of long-time properties in polymeric glasses with high interfacial areas. We expect that this interfacial transient elastomer effect and TTS breakdown should normally occur in macromolecular systems ranging from nanocomposites to thin films, where interfaces dominate material properties5,10.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Formation of wetting ridge and its topological profile.
Fig. 2: Polymer nano-rheology and surface chain dynamics.
Fig. 3: Failure of TTS at the glassy polymer surface.
Fig. 4: Emergence of rubbery dynamics at the surface of the unentangled polymer.

Data availability

The data that support the findings of this study are available within the article and its Supplementary Information. Raw simulation trajectories are available upon request from D.S.S.

Code availability

Simulations employ standard codes (LAMMPS) and methods that are freely available or documented in the literature.


  1. 1.

    Swallen, S. F. et al. Organic glasses with exceptional thermodynamic and kinetic stability. Science 315, 353–356 (2007).

    ADS  CAS  Article  Google Scholar 

  2. 2.

    Ediger, M. D. Perspective: highly stable vapor-deposited glasses. J. Chem. Phys. 147, 210901 (2017).

    ADS  CAS  Article  Google Scholar 

  3. 3.

    Dutcher, J. R. & Ediger, M. D. Glass surfaces not so glassy. Science 319, 577−578 (2008).

    Article  Google Scholar 

  4. 4.

    Jones, R. A. L. Glasses with liquid-like surfaces. Nat. Mater. 2, 645–646 (2003).

    ADS  CAS  Article  Google Scholar 

  5. 5.

    Napolitano, S., Glynos, E. & Tito, N. B. Glass transition of polymers in bulk, confined geometries, and near interfaces. Rep. Prog. Phys. 80, 036602 (2017).

    ADS  Article  Google Scholar 

  6. 6.

    Schweizer, K. S. & Simmons, D. S. Progress towards a phenomenological picture and theoretical understanding of glassy dynamics and vitrification near interfaces and under nanoconfinement. J. Chem. Phys. 151, 240901 (2019).

    ADS  Article  Google Scholar 

  7. 7.

    Ellison, C. J. & Torkelson, J. M. The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat. Mater. 2, 695–700 (2003).

    ADS  CAS  Article  Google Scholar 

  8. 8.

    Priestley, R. D., Ellison, C. J., Broadbelt, L. J. & Torkelson, J. M. Structural relaxation of polymer glasses at surfaces, interfaces, and in between. Science 309, 456–459 (2005).

    ADS  CAS  Article  Google Scholar 

  9. 9.

    Pye, J. E., Rohald, K. A., Baker, E. A. & Roth, C. B. Physical aging in ultrathin polystyrene films: evidence of a gradient in dynamics at the free surface and its connection to the glass transition temperature reductions. Macromolecules 43, 8296–8303 (2010).

    ADS  CAS  Article  Google Scholar 

  10. 10.

    Yu, L. Surface mobility of molecular glasses and its importance in physical stability. Adv. Drug Deliv. Rev. 100, 3–9 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Jackson, C. L. & McKenna, G. B. The glass transition of organic liquids confined to small pores. J. Non-Cryst. Solids 131–133, 221–224 (1991).

    ADS  Article  Google Scholar 

  12. 12.

    Keddie, J. L., Jones, R. A. L. & Cory, R. A. Size-dependent depression of the glass transition temperature in polymer films. Europhys. Lett. 27, 59–64 (1994).

    ADS  CAS  Article  Google Scholar 

  13. 13.

    Fakhraai, Z. & Forrest, J. A. Measuring the surface dynamics of glassy polymers. Science 319, 600–604 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    Paeng, K., Swallen, S. F. & Ediger, M. D. Direct measurement of molecular motion in freestanding polystyrene thin films. J. Am. Chem. Soc. 133, 8444–8447 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    Ediger, M. D. & Forrest, J. A. Dynamics near free surfaces and the glass transition in thin polymer films: a view to the future. Macromolecules 47, 471–478 (2014).

    ADS  CAS  Article  Google Scholar 

  16. 16.

    Yang, Z., Fujii, Y., Lee, F. K., Lam, C-H. & Tsui, O. K. C. Glass transition dynamics and surface layer mobility in unentangled polystyrene films. Science 328, 1676–1679 (2010).

    ADS  CAS  Article  Google Scholar 

  17. 17.

    Chai, Y. et al. A direct quantitative measure of surface mobility in a glassy polymer. Science 343, 994–999 (2014).

    ADS  CAS  Article  Google Scholar 

  18. 18.

    Li, Y. et al. Surface diffusion in glasses of rod-like molecules posaconazole and itraconazole: effect of interfacial molecular alignment and bulk penetration. Soft Matter 16, 5062–5070 (2020).

    ADS  CAS  Article  Google Scholar 

  19. 19.

    Flier, B. M. I. et al. Heterogeneous diffusion in thin polymer films as observed by high-temperature single-molecule fluorescence microscopy. J. Am. Chem. Soc. 134, 480–488 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    Xu, Q. et al. Decoupling role of film thickness and interfacial effect on polymer thin film dynamics. ACS Macro Lett. 10, 1–8 (2021).

    ADS  Article  Google Scholar 

  21. 21.

    Toney, M. F. et al. Near-surface alignment of polymers in rubbed films. Nature 374, 709–711 (1995).

    ADS  CAS  Article  Google Scholar 

  22. 22.

    Maeda, N., Chen, N., Tirrell, M. & Israelachvili, J. N. Adhesion and friction mechanisms of polymer-on-polymer surfaces. Science 297, 379–382 (2002).

    ADS  CAS  Article  Google Scholar 

  23. 23.

    Tanaka, K., Takahara, A. & Kajiyama, T. Rheological analysis of surface relaxation process of monodisperse polystyrene films. Macromolecules 33, 7588–7593 (2000).

    ADS  CAS  Article  Google Scholar 

  24. 24.

    Ma, J. et al. Fast surface dynamics enabled cold joining of metallic glasses. Sci. Adv. 5, eaax7256 (2019).

    ADS  CAS  Article  Google Scholar 

  25. 25.

    Li, X. et al. Low‐temperature processing of polymer nanoparticles for bioactive composites. J. Polym. Sci. B 54, 2514–2520 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Chen, F., Lam, C.-H. & Tsui, O. K. C. The surface mobility of glasses. Science 343, 975–976 (2014).

    ADS  CAS  Article  Google Scholar 

  27. 27.

    Sokolov, A. P. & Schweizer, K. S. Resolving the mystery of the chain friction mechanism in polymer liquids. Phys. Rev. Lett. 102, 248301 (2009).

    ADS  Article  Google Scholar 

  28. 28.

    Hung, J.-H., Mangalara, J. H. & Simmons, D. S. Heterogeneous rouse model predicts polymer chain translational normal mode decoupling. Macromolecules 51, 2887–2898 (2018).

    ADS  CAS  Article  Google Scholar 

  29. 29.

    Rubinstein, M. & Colby, R. H. Polymer Physics (Oxford Univ. Press, 2003).

  30. 30.

    Carré, A., Gastel, J.-C. & Shanahan, M. E. R. Viscoelastic effects in the spreading of liquids. Nature 379, 432–434 (1996).

    ADS  Article  Google Scholar 

  31. 31.

    Shanahan, M. E. R. & Carré, A. Spreading and dynamics of liquid drops involving nanometric deformations on soft substrates. Colloids Surf. A 206, 115–123 (2002).

    CAS  Article  Google Scholar 

  32. 32.

    Jerison, E. R., Xu, Y., Wilen, L. A. & Dufresne, E. R. Deformation of an elastic substrate by a three-phase contact line. Phys. Rev. Lett. 106, 186103 (2011).

    ADS  Article  Google Scholar 

  33. 33.

    Lu, H., Chen, W. & Russell, T. P. Relaxation of thin films of polystyrene floating on ionic liquid surface. Macromolecules 42, 9111–9117 (2009).

    ADS  CAS  Article  Google Scholar 

  34. 34.

    Fetters, L. J., Lohse, D. J., Richter, D., Witten, T. A. & Zirkel, A. Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules 27, 4639–4647 (1994).

    ADS  CAS  Article  Google Scholar 

  35. 35.

    Plazek, D. J. & O’Rourke, V. M. Viscoelastic behavior of low molecular weight polystyrene. J. Polym. Sci. A-2 9, 209–243 (1971).

    CAS  Article  Google Scholar 

  36. 36.

    Yang, J. & Schweizer, K. S. Glassy dynamics and mechanical response in dense fluids of soft repulsive spheres. II. Shear modulus, relaxation-elasticity connections, and rheology. J. Chem. Phys. 134, 204909 (2011).

    ADS  Article  Google Scholar 

  37. 37.

    Humphrey, W., Dalke, A. & Schulten, K. VMD — visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    CAS  Article  Google Scholar 

  38. 38.

    Lang, R. J. & Simmons, D. S. Interfacial dynamic length scales in the glass transition of a model freestanding polymer film and their connection to cooperative motion. Macromolecules 46, 9818–9825 (2013).

    ADS  CAS  Article  Google Scholar 

  39. 39.

    Khantha, M. & Balakrishnan, V. First passage time distributions for finite one-dimensional random walks. Pramana 21, 111–122 (1983).

    ADS  Article  Google Scholar 

  40. 40.

    Kröger, M. Shortest multiple disconnected path for the analysis of entanglements in two- and three-dimensional polymeric systems. Comput. Phys. Commun. 168, 209–232 (2005).

  41. 41.

    Si, L., Massa, M. V., Dalnoki-Veress, K., Brown, H. R. & Jones, R. A. L. Chain entanglement in thin freestanding polymer films. Phys. Rev. Lett. 94, 127801 (2005).

    ADS  Article  Google Scholar 

  42. 42.

    Brown, H. R. & Russell, T. P. Entanglements at polymer surfaces and interfaces. Macromolecules 29, 798–800 (1996).

    ADS  CAS  Article  Google Scholar 

Download references


We thank N. L. Yamada for assisting with the neutron reflectivity measurements and O. K. C. Tsui and J. J. Zhou for discussions. B.Z. acknowledges financial support from the Natural Science Foundation of China (grant numbers 21973083 and 21504081), and R.D.P. and K.R. acknowledge support from the National Science Foundation (NSF) Materials Research Science and Engineering Center Program through the Princeton Center for Complex Materials (grant numbers DMR-1420541 and DMR-2011750) and the NSF through grant number CBET-1706012. D.S.S. and A.G. acknowledge support from the National Science Foundation through grant number CBET-1854308. X.W. thanks the Natural Science Foundation of China (grant numbers 21674100 and 21873085), and K.T. acknowledges the JST-Mirai Program (JPMJMI18A2). We also acknowledge the BL-16 line at J-PARC (programme no.2017L2501) for providing beam time.

Author information




B.Z. and R.D.P. conceived and supervised the experiments. Z.H., N.Z. and K.R. performed experiments. D.S.S. and A.G. conceived and analysed all simulations and theories. A.G. performed all simulations under the supervision of D.S.S. D.K. and K.T. provided neutron reflectivity data. All authors discussed the results and wrote the manuscript.

Corresponding authors

Correspondence to David S. Simmons, Rodney D. Priestley or Biao Zuo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains notes on the theoretical development, Supplementary Simulation Methods, Supplementary Data, Supplementary Table 1, Supplementary Figs 1-16 and Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hao, Z., Ghanekarade, A., Zhu, N. et al. Mobility gradients yield rubbery surfaces on top of polymer glasses. Nature 596, 372–376 (2021).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing