Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-density stable glasses formed on soft substrates

Abstract

Enabled by surface-mediated equilibration, physical vapour deposition can create high-density stable glasses comparable with liquid-quenched glasses aged for millions of years. Deposition is often performed at various rates and temperatures on rigid substrates to control the glass properties. Here we demonstrate that on soft, rubbery substrates, surface-mediated equilibration is enhanced up to 170 nm away from the interface, forming stable glasses with densities up to 2.5% higher than liquid-quenched glasses within 2.5 h of deposition. Gaining similar properties on rigid substrates would require 10 million times slower deposition, taking ~3,000 years. Controlling the modulus of the rubbery substrate provides control over the glass structure and density at constant deposition conditions. These results underscore the significance of substrate elasticity in manipulating the properties of the mobile surface layer and thus the glass structure and properties, allowing access to deeper states of the energy landscape without prohibitively slow deposition rates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Surface morphology and thermodynamic stability of TPD glasses deposited on 5 nm PDMS and silicon substrates.
Fig. 2: Structural anisotropy of TPD glasses deposited on 5 nm PDMS and silicon substrates.
Fig. 3: Layering peak amplitude of TPD glasses as a function of film thickness.
Fig. 4: Effect of PDMS modulus on the structure and stability of TPD SGs.

Similar content being viewed by others

Data availability

All data supporting the findings in this study are available within the Article and its Supplementary Information, or from the corresponding author on reasonable request. Source data are provided with this paper. They are also available via Figshare at https://doi.org/10.6084/m9.figshare.25000454.

References

  1. Fakhraai, Z. & Forrest, J. Measuring the surface dynamics of glassy polymers. Science 319, 600–604 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Yang, Z., Fujii, Y., Lee, F. K., Lam, C.-H. & Tsui, O. K. Glass transition dynamics and surface layer mobility in unentangled polystyrene films. Science 328, 1676–1679 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Chai, Y. et al. A direct quantitative measure of surface mobility in a glassy polymer. Science 343, 994–999 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Zhu, L. et al. Surface self-diffusion of an organic glass. Phys. Rev. Lett. 106, 256103 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, Y. & Fakhraai, Z. Decoupling of surface diffusion and relaxation dynamics of molecular glasses. Proc. Natl Acad. Sci. USA 114, 4915–4919 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hao, Z. et al. Mobility gradients yield rubbery surfaces on top of polymer glasses. Nature 596, 372–376 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Swallen, S. F. et al. Organic glasses with exceptional thermodynamic and kinetic stability. Science 315, 353–356 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Dalal, S. S., Walters, D. M., Lyubimov, I., de Pablo, J. J. & Ediger, M. D. Tunable molecular orientation and elevated thermal stability of vapor-deposited organic semiconductors. Proc. Natl Acad. Sci. USA 112, 4227–4232 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lyubimov, I. et al. Orientational anisotropy in simulated vapor-deposited molecular glasses. J. Chem. Phys. 143, 094502 (2015).

    Article  PubMed  Google Scholar 

  10. Moore, A. R. et al. Effects of microstructure formation on the stability of vapor-deposited glasses. Proc. Natl Acad. Sci. USA 116, 5937–5942 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, A. et al. The role of intramolecular relaxations on the structure and stability of vapor-deposited glasses. J. Chem. Phys. 156, 244703 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Luo, P. & Fakhraai, Z. Surface-mediated formation of stable glasses. Annu. Rev. Phys. Chem. 74, 361–389 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Kearns, K. L., Still, T., Fytas, G. & Ediger, M. D. High-modulus organic glasses prepared by physical vapor deposition. Adv. Mater. 22, 39–42 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Dalal, S. S., Fakhraai, Z. & Ediger, M. D. High-throughput ellipsometric characterization of vapor-deposited indomethacin glasses. J. Phys. Chem. B 117, 15415–15425 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Luo, P. et al. Ultrastable metallic glasses formed on cold substrates. Nat. Commun. 9, 1389 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luo, P. et al. Microscopic structural evolution during ultrastable metallic glass formation. ACS Appl. Mater. Interfaces 13, 40098–40105 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Ràfols-Ribé, J. et al. High-performance organic light-emitting diodes comprising ultrastable glass layers. Sci. Adv. 4, eaar8332 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wolf, S. E. et al. Role of molecular layering in the enhanced mechanical properties of stable glasses. J. Phys. Chem. Lett. 13, 3360–3368 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Raegen, A. N., Yin, J., Zhou, Q. & Forrest, J. A. Ultrastable monodisperse polymer glass formed by physical vapour deposition. Nat. Mater. 19, 1110–1113 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Beasley, M. S., Bishop, C., Kasting, B. J. & Ediger, M. D. Vapor-deposited ethylbenzene glasses approach ‘ideal glass’ density. J. Phys. Chem. Lett. 10, 4069–4075 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Kearns, K. L. et al. Hiking down the energy landscape: progress toward the Kauzmann temperature via vapor deposition. J. Phys. Chem. B 112, 4934–4942 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Gujral, A., O’Hara, K. A., Toney, M. F., Chabinyc, M. L. & Ediger, M. D. Structural characterization of vapor-deposited glasses of an organic hole transport material with X-ray scattering. Chem. Mater. 27, 3341–3348 (2015).

    Article  CAS  Google Scholar 

  23. Bishop, C., Bagchi, K., Toney, M. F. & Ediger, M. D. Vapor deposition rate modifies anisotropic glassy structure of an anthracene-based organic semiconductor. J. Chem. Phys. 156, 014504 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Dawson, K. J., Kearns, K. L., Yu, L., Steffen, W. & Ediger, M. D. Physical vapor deposition as a route to hidden amorphous states. Proc. Natl Acad. Sci. USA 106, 15165–15170 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bagchi, K. et al. Origin of anisotropic molecular packing in vapor-deposited Alq3 glasses. J. Phys. Chem. Lett. 10, 164–170 (2018).

    Article  PubMed  Google Scholar 

  26. Fakhraai, Z., Still, T., Fytas, G. & Ediger, M. D. Structural variations of an organic glassformer vapor-deposited onto a temperature gradient stage. J. Phys. Chem. Lett. 2, 423–427 (2011).

    Article  CAS  Google Scholar 

  27. Guo, Y. et al. Ultrastable nanostructured polymer glasses. Nat. Mater. 11, 337–343 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Tanaka, M., Auffray, M., Nakanotani, H. & Adachi, C. Spontaneous formation of metastable orientation with well-organized permanent dipole moment in organic glassy films. Nat. Mater. 21, 819–825 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Pérez-Castañeda, T., Rodríguez-Tinoco, C., Rodríguez-Viejo, J. & Ramos, M. A. Suppression of tunneling two-level systems in ultrastable glasses of indomethacin. Proc. Natl Acad. Sci. USA 111, 11275–11280 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Singh, S., Ediger, M. D. & De Pablo, J. J. Ultrastable glasses from in silico vapour deposition. Nat. Mater. 12, 139–144 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Chua, Y., Ahrenberg, M., Tylinski, M., Ediger, M. D. & Schick, C. How much time is needed to form a kinetically stable glass? a.c. calorimetric study of vapor-deposited glasses of ethylcyclohexane. J. Chem. Phys. 142, 054506 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Kearns, K. L., Krzyskowski, P. & Devereaux, Z. Using deposition rate to increase the thermal and kinetic stability of vapor-deposited hole transport layer glasses via a simple sublimation apparatus. J. Chem. Phys. 146, 203328 (2017).

    Article  PubMed  Google Scholar 

  33. Qi, D., Fakhraai, Z. & Forrest, J. Substrate and chain size dependence of near surface dynamics of glassy polymers. Phys. Rev. Lett. 101, 096101 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Baglay, R. R. & Roth, C. B. Local glass transition temperature Tg(z) of polystyrene next to different polymers: hard vs. soft confinement. J. Chem. Phys. 146, 203307 (2017).

    Article  PubMed  Google Scholar 

  35. Gagnon, Y. J. & Roth, C. B. Local glass transition temperature Tg(z) within polystyrene is strongly impacted by the modulus of the neighboring PDMS domain. ACS Macro Lett. 9, 1625–1631 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Bagchi, K. et al. Over what length scale does an inorganic substrate perturb the structure of a glassy organic semiconductor? ACS Appl. Mater. Interfaces 12, 26717–26726 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Fiori, M. E., Bagchi, K., Toney, M. F. & Ediger, M. D. Surface equilibration mechanism controls the molecular packing of glassy molecular semiconductors at organic interfaces. Proc. Natl Acad. Sci. USA 118, e2111988118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ferron, T. J., Fiori, M. E., Ediger, M. D., DeLongchamp, D. M. & Sunday, D. F. Composition dictates molecular orientation at the heterointerfaces of vapor-deposited glasses. JACS Au 3, 1931–1938 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cubuk, E. D. et al. Structure-property relationships from universal signatures of plasticity in disordered solids. Science 358, 1033–1037 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, Y. et al. Long-range correlated dynamics in ultra-thin molecular glass films. J. Chem. Phys. 145, 114502 (2016).

    Article  Google Scholar 

  41. Jin, Y. et al. Glasses denser than the supercooled liquid. Proc. Natl Acad. Sci. USA 118, e2100738118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Walters, D. M., Richert, R. & Ediger, M. D. Thermal stability of vapor-deposited stable glasses of an organic semiconductor. J. Chem. Phys. 142, 134504 (2015).

    Article  PubMed  Google Scholar 

  43. Paeng, K., Swallen, S. F. & Ediger, M. D. Direct measurement of molecular motion in freestanding polystyrene thin films. J. Am. Chem. Soc. 133, 8444–8447 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Thoms, E., Gabriel, J., Guiseppi-Elie, A., Ediger, M. D. & Richert, R. In situ observation of fast surface dynamics during the vapor-deposition of a stable organic glass. Soft Matter 16, 10860–10864 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Böttcher, C. J. F. & Bordewijk, P. Theory of Electric Polarization Vol. 2 (Elsevier Science, 1978).

  46. Hermans, J., Hermans, P., Vermaas, D. & Weidinger, A. Quantitative evaluation of orientation in cellulose fibres from the X-ray fibre diagram. Recl Trav. Chim. Pays-Bas 65, 427–447 (1946).

    Article  CAS  Google Scholar 

  47. Dalal, S. S., Sepúlveda, A., Pribil, G. K., Fakhraai, Z. & Ediger, M. D. Density and birefringence of a highly stable α,α,β-trisnaphthylbenzene glass. J. Chem. Phys. 136, 204501 (2012).

    Article  PubMed  Google Scholar 

  48. Han, Y., Huang, X., Rohrbach, A. C. & Roth, C. B. Comparing refractive index and density changes with decreasing film thickness in thin supported films across different polymers. J. Chem. Phys. 153, 044902 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Johnston, I., McCluskey, D., Tan, C. & Tracey, M. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 24, 035017 (2014).

    Article  CAS  Google Scholar 

  50. Mirigian, S. & Schweizer, K. S. Elastically cooperative activated barrier hopping theory of relaxation in viscous fluids. I. General formulation and application to hard sphere fluids. J. Chem. Phys. 140, 194506 (2014).

    Article  PubMed  Google Scholar 

  51. Samanta, S. et al. Exploring the importance of surface diffusion in stability of vapor-deposited organic glasses. J. Phys. Chem. B 123, 4108–4117 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Ebenstein, D. M. & Wahl, K. J. A comparison of JKR-based methods to analyze quasi-static and dynamic indentation force curves. J. Colloid Interface Sci. 298, 652–662 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Reedy, E. Thin-coating contact mechanics with adhesion. J. Mater. Res. 21, 2660–2668 (2006).

    Article  CAS  Google Scholar 

  54. Lötters, J. C., Olthuis, W., Veltink, P. H. & Bergveld, P. The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microeng. 7, 145 (1997).

    Article  Google Scholar 

  55. Pye, J. E. & Roth, C. B. Physical aging of polymer films quenched and measured free-standing via ellipsometry: controlling stress imparted by thermal expansion mismatch between film and support. Macromolecules 46, 9455–9463 (2013).

    Article  CAS  Google Scholar 

  56. Dogru, S., Aksoy, B., Bayraktar, H. & Alaca, B. E. Poisson’s ratio of PDMS thin films. Polym. Test. 69, 375–384 (2018).

    Article  CAS  Google Scholar 

  57. Dow Chemical Company. SYLGARD 184 Silicone Elastomer Technical Data Sheet (accessed 17 May 2023); https://www.dow.com/content/dam/dcc/documents/en-us/productdatasheet/11/11-31/11-3184-sylgard-184-elastomer.pdf

  58. Schneider, F., Draheim, J., Kamberger, R. & Wallrabe, U. Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS. Sens. Actuators, A 151, 95–99 (2009).

    Article  CAS  Google Scholar 

  59. Cai, D., Neyer, A., Kuckuk, R. & Heise, H. M. Raman, mid-infrared, near-infrared and ultraviolet–visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials. J. Mol. Struct. 976, 274–281 (2010).

    Article  CAS  Google Scholar 

  60. Santiago-Alvarado, A. et al. Polynomial fitting techniques applied to opto-mechanical properties of PDMS Sylgard 184 for given curing parameters. Mater. Res. Express 7, 045301 (2020).

    Article  CAS  Google Scholar 

  61. Python based package developed at the NSLS-II for GIWAXS data processing. GitHub https://github.com/NSLS-II-SMI/smi-analysis (2021).

  62. Foxtrot Software Developed by Synchrotron SOLEIL for X-ray Scattering Data Analysis (accessed 11 June 2023); https://www.synchrotron-soleil.fr/en/beamlines/swing

Download references

Acknowledgements

We thank M. D. Ediger for insightful discussions. We acknowledge financial support from the National Science Foundation (NSF) Materials Research Science and Engineering Centers (MRSEC) under grant DMR-1720530. Support during manuscript revisions and final editing was provided by Wisconsin MRSEC grant DMR-2309000. We acknowledge the use of the Dual Source and Environmental X-ray Scattering facility operated by the Laboratory for Research on the Structure of Matter at the University of Pennsylvania supported by NSF through DMR-2309043. This research used the 12-ID (SMI) beamline of the National Synchrotron Light Source II, a US Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Brookhaven National Laboratory under contract no. DE-SC0012704. P.L. acknowledges postdoctoral fellowship funding from the School of Arts and Sciences of the University of Pennsylvania. C.Y.C. acknowledges support from the NSF Graduate Research Fellowship Program (NSF GRFP, DGE-1845298).

Author information

Authors and Affiliations

Authors

Contributions

Z.F. directed the project. P.L. performed the sample preparations and AFM, SE and in-house GIWAXS measurements with the help of S.G. and T.N. P.L., S.E.W., D.H.K., R.B.S., C.Y.C., M.Z. and P.W. performed the synchrotron GIWAXS measurements. P.L., S.E.W. and P.W. analysed the GIWAXS data. B.M. performed the AFM indentation experiments. P.L. and Z.F. wrote the paper with help from all authors.

Corresponding author

Correspondence to Zahra Fakhraai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Camille Bishop, Connie Roth and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4, Figs. 1–32 and References.

Source data

Source Data Fig. 1

Data for Fig. 1.

Source Data Fig. 2

Data for Fig. 2.

Source Data Fig. 3

Data for Fig. 3.

Source Data Fig. 4

Data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, P., Wolf, S.E., Govind, S. et al. High-density stable glasses formed on soft substrates. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01828-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01828-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing