Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Unusual width of the superconducting transition in a hydride

The Original Article was published on 14 October 2020

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Resistive transition in a magnetic field for MgB2 and YBCO.
Fig. 2: Relative broadening of the resistive transition versus magnetic field.

References

  1. Snider, E. et al. Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature 586, 373–377 (2020).

    Article  ADS  CAS  Google Scholar 

  2. Tinkham, M. Introduction to Superconductivity (McGraw Hill, 1996).

  3. Pickard, C. J., Errea, I. & Eremets, M. I. Superconducting hydrides under pressure. Annu. Rev. Condens. Matter Phys. 11, 57–76 (2020).

    Article  CAS  Google Scholar 

  4. Kim, Y. B., Hempstead, C. F. & Strnad, A. R. Flux-flow resistance in type-II superconductors. Phys. Rev. 139, A1163 (1965).

    Article  ADS  Google Scholar 

  5. Anderson, P. W. & Kim, Y. B. Hard superconductivity: theory of the motion of Abrikosov flux lines. Rev. Mod. Phys. 36, 39 (1964).

    Article  ADS  Google Scholar 

  6. Fisher, D. S., Fisher, M. P. A. & Huse, D. A. Thermal fluctuations, quenched disorder, phase transitions, and transport in type-II superconductors. Phys. Rev. B 43, 130–159 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Canfield, P. C., Bud’ko, S. L. & Finnemore, D. K. An overview of the basic physical properties of MgB2. Physica C 385, 1–7 (2003).

    Article  ADS  CAS  Google Scholar 

  8. Gupta, A. et al. Resistivity broadening, upper critical fields and irreversibility lines in bulk PbMo6S8 and SnMo6S8 Chevrel phase superconductors. Physica C 235–240, 2541–2542 (1994).

    Article  ADS  Google Scholar 

  9. Guo, J. et al. Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190 GPa. Proc. Natl Acad. Sci. USA 114, 13144–13147 (2017).

    Article  ADS  CAS  Google Scholar 

  10. Kumar, D. et al. Flux pinning and improved critical current density in superconducting boron doped diamond films. J. Phys. Commun. 2, 045015 (2018).

    Article  Google Scholar 

  11. Eisaki, H. et al. Competition between magnetism and superconductivity in rare-earth nickel boride carbides. Phys. Rev. B 50, 647(R) (1994).

    Article  ADS  Google Scholar 

  12. Iye, Y. et al. The anisotropic superconductivity of RBa2Cu3O7−x (R: Y, Gd and Ho) single crystals. Physica C 153–155, 26–31 (1988).

    Article  ADS  Google Scholar 

  13. Kitazawa, K. et al. Broadening mechanism of resistive transition under magnetic field in single crystalline (La1−xSrx)2CuO4. Jpn. J. Appl. Phys. 28, L555 (1989).

    Article  CAS  Google Scholar 

  14. Ito, H. et al. Resistive superconducting transition of κ-type BEDT-TTF organic superconductors in a magnetic field. J. Supercond. 7, 667–669 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Chen, X. H. et al. Superconductivity at 43 K in SmFeAsO1−xFx. Nature 453, 761–762 (2008).

    Article  ADS  CAS  Google Scholar 

  16. Jung, S.-G. et al. Influence of carbon-ion irradiation on the superconducting critical properties of MgB2 thin films. Supercond. Sci. Technol. 32, 025006 (2019).

    Article  ADS  CAS  Google Scholar 

  17. Song, J., Fabbris, G., Bi, W., Haskel, D. & Schilling, J. S. Pressure-induced superconductivity in elemental ytterbium metal. Phys. Rev. Lett. 121, 037004 (2018).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge clarifying correspondence with the authors of ref. 1. F.M. was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC) and by an MIF from the Province of Alberta.

Author information

Authors and Affiliations

Authors

Contributions

J.E.H. and F.M. contributed equally to all aspects of the preparation of this work.

Corresponding authors

Correspondence to J. E. Hirsch or F. Marsiglio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirsch, J.E., Marsiglio, F. Unusual width of the superconducting transition in a hydride. Nature 596, E9–E10 (2021). https://doi.org/10.1038/s41586-021-03595-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-03595-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing