Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Designing the next generation of proton-exchange membrane fuel cells


With the rapid growth and development of proton-exchange membrane fuel cell (PEMFC) technology, there has been increasing demand for clean and sustainable global energy applications. Of the many device-level and infrastructure challenges that need to be overcome before wide commercialization can be realized, one of the most critical ones is increasing the PEMFC power density, and ambitious goals have been proposed globally. For example, the short- and long-term power density goals of Japan’s New Energy and Industrial Technology Development Organization are 6 kilowatts per litre by 2030 and 9 kilowatts per litre by 2040, respectively. To this end, here we propose technical development directions for next-generation high-power-density PEMFCs. We present the latest ideas for improvements in the membrane electrode assembly and its components with regard to water and thermal management and materials. These concepts are expected to be implemented in next-generation PEMFCs to achieve high power density.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Expected application domains of BEVs and FCVs in future automotive transportation, and comparison of their technical characteristics6,7,8,9,10,11,12,13.
Fig. 2: Overview of progressive improvements in PEMFCs to meet future high-power-density requirements and a schematic explanation of the working principle.
Fig. 3: State-of-the-art and next-generation MEA designs.
Fig. 4: Trends in the development of BPs for FCVs.


  1. 1.

    Jewell, J. et al. Limited emission reductions from fuel subsidy removal except in energy-exporting regions. Nature 554, 229–233 (2018).

    ADS  CAS  Google Scholar 

  2. 2.

    Staffell, I. et al. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12, 463–491 (2019).

    CAS  Google Scholar 

  3. 3.

    Itaoka, K., Saito, A. & Sasaki, K. Public perception on hydrogen infrastructure in Japan: Influence of rollout of commercial fuel cell vehicles. Int. J. Hydrogen Energy 42, 7290–7296 (2017).

    CAS  Google Scholar 

  4. 4.

    Eberle, U., Müller, B. & Helmolt, R. Fuel cell electric vehicles and hydrogen infrastructure: status 2012. Energy Environ. Sci. 5, 8780–8798 (2012).

    Google Scholar 

  5. 5.

    Cano, Z. P. et al. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279–289 (2018).

    ADS  Google Scholar 

  6. 6.

    Gröger, O., Gasteiger, H. A. & Suchsland, J. P. Electromobility: batteries or fuel cells? J. Electrochem. Soc. 162, A2605–A2622 (2015). This review compares batteries and fuel cells for automotive applications, suggesting that the high energy density of fuel cells makes them suitable for heavy-duty and long-distance transportation.

    Google Scholar 

  7. 7.

    Hu, X. et al. Battery warm-up methodologies at subzero temperatures for automotive applications: recent advances and perspectives. Pror. Energy Combust. Sci. 77, 100806 (2020).

    Google Scholar 

  8. 8.

    Introducing the all-new Toyota MIRAI. Toyota Europe Newsroom (2020).

  9. 9.

    Wilson, A., Kleen, G. & Papageorgopoulos, D. Fuel Cell System Cost–2017. DOE Hydrogen and Fuel Cells Program Record 17007. (DOE Fuel Cell Technologies Office, 2017).

  10. 10.

    Wang, Y. et al. Fundamentals, materials, and machine learning of polymer electrolyte membrane fuel cell technology. Energy AI 1, 100014 (2020).

    Google Scholar 

  11. 11.

    Frendo, O. et al. Data-driven smart charging for heterogeneous electric vehicle fleets. Energy AI 1, 100007 (2020).

    Google Scholar 

  12. 12.

    Jin, D. & Jiao, K. Charging infrastructure intellectualization and future of different automotive powertrains. Joule 4, 1634–1636 (2020).

    Google Scholar 

  13. 13.

    Harrison, M. Toyota electrification strategy in Europe today and tomorrow. Toyota Motor Europe (2019).

  14. 14.

    Full specs of Toyota MIRAI 2021. Toyota USA (2020).

  15. 15.

    Konno, N., Mizuno, S. & Nakaji, H. Development of compact and high-performance fuel cell stack. SAE Mobilus 4, 123–129 (2015).

    Google Scholar 

  16. 16.

    Amamiya, I. & Tanaka, S. Current topics proposed by PEFC manufacturers, etc. – current status and topics of fuel cells for FCV. In Hydrogen, Fuel Cell Project Evaluation, and Issue Sharing Week (Japan New Energy and Industrial Technology Development Organization, 2019); available at (in Japanese).

  17. 17.

    Volume manufacturing of PEM FC stacks for transportation and in-line quality assurance (European Commission, 2019);

  18. 18.

    Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU). 2019 annual work plan and budget (FCH 2 JU, 2018);

  19. 19.

    Ozden, A., Shahgaldi, S., Li, X. & Hamdullahpur, F. A review of gas diffusion layers for proton exchange membrane fuel cells – with a focus on characteristics, characterization techniques, materials and designs. Pror. Energy Combust. Sci. 74, 50–102 (2019).

    Google Scholar 

  20. 20.

    Gerteisen, D. & Sadeler, C. Stability and performance improvement of a polymer electrolyte membrane fuel cell stack by a laser perforation of gas diffusion layers. J. Power Sources 195, 5252–5257 (2010).

    ADS  CAS  Google Scholar 

  21. 21.

    Tian, X. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 366, 850–856 (2019).

    ADS  CAS  Google Scholar 

  22. 22.

    Chong, L. et al. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 362, 1276–1281 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).

    ADS  CAS  Google Scholar 

  24. 24.

    Li, M. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354, 1414–1419 (2016). This study achieves high specific and mass activity using ultrafine jagged platinum nanowires for oxygen reduction, suggesting a promising approach to realizing high-current-density fuel cells.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Huang, X. et al. High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230–1234 (2015).

    ADS  CAS  Google Scholar 

  26. 26.

    Ott, S. et al. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Nat. Mater. 19, 77–85 (2020). This study shows that N-doped carbon supports can improve ionomer distribution in the catalyst layer, providing an important path to next-generation high-power-density fuel cells.

    ADS  CAS  Google Scholar 

  27. 27.

    Yarlagadda, V. et al. Boosting fuel cell performance with accessible carbon mesopores. ACS Energy Lett. 3, 618–621 (2018).

    CAS  Google Scholar 

  28. 28.

    Poojary, S., Islam, M. N., Shrivastava, U. N., Roberts, E. P. L. & Karan, K. Transport and electrochemical interface properties of ionomers in low-Pt loading catalyst layers: effect of ionomer equivalent weight and relative humidity. Molecules 25, 3387 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Yoon, K. R. et al. Mussel-inspired polydopamine-treated reinforced composite membranes with self-supported CeOx radical scavengers for highly stable PEM fuel cells. Adv. Funct. Mater. 29, 1806929 (2019).

    Google Scholar 

  30. 30.

    Park, C. H. et al. Nanocrack-regulated self-humidifying membranes. Nature 532, 480–483 (2016). This study develops self-humidifying membranes with surface nanocrack coatings, providing an alternative solution for membranes that tolerate low-humidity conditions.

    ADS  Google Scholar 

  31. 31.

    Liu, X. et al. Magnetic field alignment of stable proton-conducting channels in an electrolyte membrane. Nat. Commun. 10, 842 (2019). This study develops composite membranes with through-plane-aligned proton channels, showing that thus oriented channels improve proton conductivity and durability, and that microporous channels strongly retain water.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Tanaka, S., Bradfield, W. W., Legrand, C. & Malan, A. G. Numerical and experimental study of the effects of the electrical resistance and diffusivity under clamping pressure on the performance of a metallic gas-diffusion layer in polymer electrolyte fuel cells. J. Power Sources 330, 273–284 (2016).

    ADS  CAS  Google Scholar 

  33. 33.

    Tanaka, S. & Shudo, T. Corrugated mesh flow channel and novel microporous layers for reducing flooding and resistance in gas diffusion layer-less polymer electrolyte fuel cells. J. Power Sources 268, 183–193 (2014).

    ADS  CAS  Google Scholar 

  34. 34.

    Lee, J., Hinebaugh, J. & Bazylak, A. Synchrotron X-ray radiographic investigations of liquid water transport behavior in a PEMFC with MPL-coated GDLs. J. Power Sources 227, 123–130 (2013).

    CAS  Google Scholar 

  35. 35.

    Li, D. et al. Functional links between Pt single crystal morphology and nanoparticles with different size and shape: the oxygen reduction reaction case. Energy Environ. Sci. 7, 4061–4069 (2014).

    CAS  Google Scholar 

  36. 36.

    Karan, K. PEFC catalyst layer: recent advances in materials, microstructural characterization, and modeling. Curr. Opin. Electrochem. 5, 27–35 (2017).

    CAS  Google Scholar 

  37. 37.

    Kim, Y. S. & Pivovar, B. S. The membrane–electrode interface in PEFCs. J. Electrochem. Soc. 157, B1616 (2010).

    CAS  Google Scholar 

  38. 38.

    Holdcroft, S. Fuel cell catalyst layers: a polymer science perspective. Chem. Mater. 26, 381–393 (2014).

    CAS  Google Scholar 

  39. 39.

    Yin, Y. et al. Ionomer migration within PEMFC catalyst layers induced by humidity changes. Electrochem. Commun. 109, 106590 (2019).

    CAS  Google Scholar 

  40. 40.

    Crowtz, T. C. & Dahn, J. R. Screening bifunctional Pt based NSTF catalysts for durability with the rotating disk electrode: The effect of Ir and Ru. J. Electrochem. Soc. 165, F854–F862 (2018).

    CAS  Google Scholar 

  41. 41.

    Steinbach, A. J. et al. Ultrathin film NSTF ORR electrocatalysts for PEM fuel cells. ECS Trans. 80, 659–676 (2017).

    CAS  Google Scholar 

  42. 42.

    Steinbach, A. Final Technical Report for Project Entitled Highly Active, Durable, and Ultra-Low PGM NSTF Thin Film ORR Catalysts and Support. Technical Report DOE-3M-0007270 (US Department of Energy, 2020).

  43. 43.

    Murata, S., Imanishi, M., Hasegawa, S. & Namba, R. Vertically aligned carbon nanotube electrodes for high current density operating proton exchange membrane fuel cells. J. Power Sources 253, 104–113 (2014).

    ADS  CAS  Google Scholar 

  44. 44.

    Kraytsberg, A. & Ein-Eli, Y. Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels 28, 7303–7330 (2014).

    CAS  Google Scholar 

  45. 45.

    Wang, Y., Ruiz Diaz, D. F., Chen, K. S., Wang, Z. & Adroher, X. C. Materials, technological status, and fundamentals of PEM fuel cells – A review. Mater. Today 32, 178–203 (2020).

    CAS  Google Scholar 

  46. 46.

    Zamel, N. & Li, X. Effect of contaminants on polymer electrolyte membrane fuel cells. Pror. Energy Combust. Sci. 37, 292–329 (2011).

    CAS  Google Scholar 

  47. 47.

    Kinumoto, T. et al. Durability of perfluorinated ionomer membrane against hydrogen peroxide. J. Power Sources 158, 1222–1228 (2006).

    ADS  CAS  Google Scholar 

  48. 48.

    Pearman, B. P. et al. The chemical behavior and degradation mitigation effect of cerium oxide nanoparticles in perfluorosulfonic acid polymer electrolyte membranes. Polym. Degrad. Stabil. 98, 1766–1772 (2013).

    CAS  Google Scholar 

  49. 49.

    Durante, V. A. & Delaney, W. E. Highly stable fuel cell membranes and methods of making them. US patent 7,989,115 B2 (2011).

  50. 50.

    Zaidi, S. M. J., Mikhailenko, S. D., Robertson, G. P., Guiver, M. D. & Kaliaguine, S. Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. J. Membr. Sci. 173, 17–34 (2000).

    CAS  Google Scholar 

  51. 51.

    Miyatake, K., Chikashige, Y., Higuchi, E. & Watanabe, M. Tuned Polymer electrolyte membranes based on aromatic polyethers for fuel cell applications. J. Am. Chem. Soc. 129, 3879–3887 (2007).

    CAS  Google Scholar 

  52. 52.

    Yin, Y. et al. Synthesis and properties of highly sulfonated proton conducting polyimides from bis(3-sulfopropoxy)benzidine diamines. J. Mater. Chem. 14, 1062–1070 (2004).

    CAS  Google Scholar 

  53. 53.

    Wu, S. et al. The direct synthesis of wholly aromatic poly(p-phenylene)s bearing sulfobenzoyl side groups as proton exchange membranes. Polymer 47, 6993–7000 (2006).

    CAS  Google Scholar 

  54. 54.

    Rikukawa, M. & Sanui, K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog. Polym. Sci. 25, 1463–1502 (2000).

    CAS  Google Scholar 

  55. 55.

    Smitha, B., Sridhar, S. & Khan, A. A. Solid polymer electrolyte membranes for fuel cell applications—a review. J. Membr. Sci. 259, 10–26 (2005).

    CAS  Google Scholar 

  56. 56.

    Miyake, J. et al. Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells. Sci. Adv. 3, eaao0476 (2017).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Kang, N. R., Pham, T. H. & Jannasch, P. Polyaromatic perfluorophenylsulfonic acids with high radical resistance and proton conductivity. ACS Macro Lett. 8, 1247–1251 (2019).

    CAS  Google Scholar 

  58. 58.

    Adamski, M. et al. Molecular branching as a simple approach to improving polymer electrolyte membranes. J. Membr. Sci. 595, 117539 (2020).

    CAS  Google Scholar 

  59. 59.

    Lee, K.-S., Spendelow, J. S., Choe, Y.-K., Fujimoto, C. & Kim, Y. S. An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs. Nat. Energy 1, 16120 (2016).

    ADS  CAS  Google Scholar 

  60. 60.

    Lee, S. Y. et al. Morphological transformation during cross-linking of a highly sulfonated poly(phenylene sulfide nitrile) random copolymer. Energy Environ. Sci. 5, 9795–9802 (2012).

    CAS  Google Scholar 

  61. 61.

    Liu, X. et al. Oriented proton-conductive nano-sponge-facilitated polymer electrolyte membranes. Energy Environ. Sci. 13, 297–309 (2020).

    CAS  Google Scholar 

  62. 62.

    Zhang, X. et al. A paradigm shift for a new class of proton exchange membranes with ferrocyanide proton-conducting groups providing enhanced oxidative stability. J. Membr. Sci. 616, 118536 (2020).

    CAS  Google Scholar 

  63. 63.

    Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Taherian, R. A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: materials, fabrication, and material selection. J. Power Sources 265, 370–390 (2014); retraction 265, 370–390 (2014).

    ADS  CAS  Google Scholar 

  65. 65.

    Office of Energy Efficiency & Renewable Energy. DOE Technical targets for polymer electrolyte membrane fuel cell components (accessed 3 July 2021).

  66. 66.

    Wang, C. & Cullen, D. A. Novel structured metal bipolar plates for low cost manufacturing (TreadStone Technologies Inc., 2020).

  67. 67.

    James, B. D., Huya-Kouadio, J. M., Houchins, C. & DeSantis, D. A. Mass production cost estimation of direct H2 PEM fuel cell systems for transportation applications: 2018 update (Strateg. Anal. Inc., 2018).This study evaluates the manufacturing cost of fuel cells from individual components to transportation systems. The paper supports the discussion on bipolar plates presented in this Perspective.

  68. 68.

    Adrianowycz, O. et al. Next Generation Bipolar Plates for Automotive PEM Fuel Cells. Report DE-FC36-07GO17012 (Office of Scientific & Technical Information, 2010);

  69. 69.

    Saito, N., Kikuchi, H. & Nakao, Y. New Fuel Cell Stack for FCX Clarity. Honda R&D Technical Review 21, 1 (Honda, 2009).

  70. 70.

    Inoue, M., Saito, N. & Uchibori, K. Next-Generation Fuel Cell Stack for Honda FCX. Honda R&D Technical Review 17, 2 (Honda, 2005).

  71. 71.

    Kikuchi, H., Kaji, H., Nishiyama, T., Okonogi, D. & Harata, H. Development of New FC Stack for Clarity Fuel Cell. Honda R&D Technical Review 28, 2 (Honda, 2016).

  72. 72.

    Kimura, Y., Oyama, S., Giga, A. & Okonogi, D. Development of New FC Separator for Clarity Fuel Cell. Honda R&D Technical Review 29, 2 (Honda, 2017).

  73. 73.

    Wilberforce, T. et al. A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells. Renew. Sustain. Energy Rev. 111, 236–260 (2019).

    CAS  Google Scholar 

  74. 74.

    Dubau, L. et al. A review of PEM fuel cell durability: materials degradation, local heterogeneities of aging and possible mitigation strategies. WIREs Energy Environ. 3, 540–560 (2014).

    CAS  Google Scholar 

  75. 75.

    Jiao, K. & Li, X. Water transport in polymer electrolyte membrane fuel cells. Pror. Energy Combust. Sci. 37, 221–291 (2011).

    CAS  Google Scholar 

  76. 76.

    Zhang, G. & Kandlikar, S. G. A critical review of cooling techniques in proton exchange membrane fuel cell stacks. Int. J. Hydrogen Energy 37, 2412–2429 (2012).

    CAS  Google Scholar 

  77. 77.

    Khandelwal, M. & Mench, M. M. Direct measurement of through-plane thermal conductivity and contact resistance in fuel cell material. J. Power Sources 161, 1106–1115 (2006).

    ADS  CAS  Google Scholar 

  78. 78.

    Antunes, R. A., Oliveira, M. C. L., Ett, G. & Ett, V. Corrosion of metal bipolar plates for PEM fuel cells: a review. Int. J. Hydrogen Energy 35, 3632–3647 (2010).

    CAS  Google Scholar 

  79. 79.

    Saiki, K. Strength Design Method of Metallic Separator for Fuel Cell. Honda R&D Technical Review 29, 1 (Honda, 2017).

  80. 80.

    Norley, J. Graphite-based bipolar plates for PEM motive fuel cell applications. In DOE Bipolar Plates Workshop (GrafTech Int. Holdings Ltd, 2017);

  81. 81.

    Wu, J. et al. A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J. Power Sources 184, 104–119 (2008).

    ADS  CAS  Google Scholar 

  82. 82.

    Wang, Y. Porous-media flow fields for polymer electrolyte fuel cells. J. Electrochem. Soc. 156, B1124 (2009).

    CAS  Google Scholar 

  83. 83.

    Srouji, A. K., Zheng, L. J., Dross, R., Turhan, A. & Mench, M. M. Ultra-high current density water management in polymer electrolyte fuel cell with porous metallic flow field. J. Power Sources 239, 433–442 (2013).

    CAS  Google Scholar 

  84. 84.

    Yuan, W., Tang, Y., Yang, X. & Wan, Z. Porous metal materials for polymer electrolyte membrane fuel cells – a review. Appl. Energy 94, 309–329 (2012).

    ADS  CAS  Google Scholar 

  85. 85.

    Park, J. E. et al. Gas diffusion layer/flow-field unified membrane-electrode assembly in fuel cell using graphene foam. Electrochim. Acta 323, 134808 (2019). This study proposes an integrated design of the gas diffusion layer and flow field with boosted fuel cell performance, demonstrating that such a design is promising for increasing the power density.

    CAS  Google Scholar 

Download references


This research was supported by the China-UK International Cooperation and Exchange Project (Newton Advanced Fellowship), supported by the National Natural Science Foundation of China (grant number 51861130359), the UK Royal Society (grant number NAF\R1\180146), UK EPSRC (grant number EP/S000933/1), and the Natural Science Foundation of Tianjin (China) for Distinguished Young Scholars (grant number 18JCJQJC46700).

Author information




K.J., J.X., Q.D., Z.H. and M.D.G. conceived the idea for the study. All authors contributed to the writing and commented on the manuscript. K.J., Z.B., B.X., B.W., Y.Z., L.F. and M.D.G. contributed to the preparation of the figures.

Corresponding authors

Correspondence to Kui Jiao or Zhongjun Hou or Michael D. Guiver.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Shangfeng Du, Julien Durst and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Information, including Supplementary Tables 1-2 and additional references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiao, K., Xuan, J., Du, Q. et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 595, 361–369 (2021).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing