Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental deterministic correction of qubit loss


The successful operation of quantum computers relies on protecting qubits from decoherence and noise, which—if uncorrected—will lead to erroneous results. Because these errors accumulate during an algorithm, correcting them is a key requirement for large-scale and fault-tolerant quantum information processors. Besides computational errors, which can be addressed by quantum error correction1,2,3,4,5,6,7,8,9, the carrier of the information can also be completely lost or the information can leak out of the computational space10,11,12,13,14. It is expected that such loss errors will occur at rates that are comparable to those of computational errors. Here we experimentally implement a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code15,16 in a trapped-ion quantum processor. The key technique used for this correction is a quantum non-demolition measurement performed via an ancillary qubit, which acts as a minimally invasive probe that detects absent qubits while imparting the smallest quantum mechanically possible disturbance to the remaining qubits. Upon detecting qubit loss, a recovery procedure is triggered in real time that maps the logical information onto a new encoding on the remaining qubits. Although the current demonstration is performed in a trapped-ion quantum processor17, the protocol is applicable to other quantum computing architectures and error correcting codes, including leading two- and three-dimensional topological codes. These deterministic methods provide a complete toolbox for the correction of qubit loss that, together with techniques that mitigate computational errors, constitute the building blocks of complete and scalable quantum error correction.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The surface code and correction of qubit loss.
Fig. 2: Experimental realization of the 1+4-qubit algorithm aiming at loss detection and correction.
Fig. 3: Investigating the performance of the QND loss-detection unit.

Data availability

The data underlying the findings of this work are available at data are provided with this paper.

Code availability

All codes used for data analysis are available from the corresponding author upon reasonable request.


  1. Gottesman, D. Theory of fault-tolerant quantum computation. Phys. Rev. A 57, 127–137 (1998).

    Article  ADS  CAS  Google Scholar 

  2. Chiaverini, J. et al. Realization of quantum error correction. Nature 432, 602–605 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Schindler, P. et al. Experimental repetitive quantum error correction. Science 332, 1059–1061 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Nigg, D. et al. Quantum computations on a topologically encoded qubit. Science 345, 302–305 (2014).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  5. Takita, M., Cross, A. W., Córcoles, A. D., Chow, J. M. & Gambetta, J. M. Experimental demonstration of fault-tolerant state preparation with superconducting qubits. Phys. Rev. Lett. 119, 180501 (2017).

    Article  ADS  PubMed  Google Scholar 

  6. Linke, N. M. et al. Fault-tolerant quantum error detection. Sci. Adv. 3, e1701074 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. Córcoles, A. D. et al. Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nat. Commun. 6, 6979 (2015).

    Article  ADS  PubMed  Google Scholar 

  8. Knill, E., Laflamme, R., Martinez, R. & Negrevergne, C. Benchmarking quantum computers: the five-qubit error correcting code. Phys. Rev. Lett. 86, 5811 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Yao, X.-C. et al. Experimental demonstration of topological error correction. Nature 482, 489 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Grassl, M., Beth, T. & Pellizzari, T. Codes for the quantum erasure channel. Phys. Rev. A 56, 33–38 (1997).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  11. Brown, N. C. & Brown, K. R. Comparing Zeeman qubits to hyperfine qubits in the context of the surface code: 174Yb+ and 171Yb+. Phys. Rev. A 97, 052301 (2018).

    Article  ADS  CAS  Google Scholar 

  12. Lu, C.-Y. et al. Experimental quantum coding against qubit loss error. Proc. Natl Acad. Sci. USA 105, 11050–11054 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bell, B. A. et al. Experimental demonstration of a graph state quantum error-correction code. Nat. Commun. 5, 3658 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Morley-Short, S. et al. Physical-depth architectural requirements for generating universal photonic cluster states. Quant. Sci. Tech. 3, 015005 (2018).

    Article  Google Scholar 

  15. Kitaev, A. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  16. Dennis, E., Kitaev, A., Landahl, A. & Preskill J. Topological quantum memory. J. Math. Phys. 43, 4452 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Schindler, P. et al. A quantum information processor with trapped ions. New J. Phys. 15, 123012 (2013).

    Article  ADS  Google Scholar 

  18. Fowler, A. G. Coping with qubit leakage in topological codes. Phys. Rev. A 88, 042308 (2013).

    Article  ADS  Google Scholar 

  19. Epstein, J. M., Cross, A. W., Magesan, E. & Gambetta, J. M. Investigating the limits of randomized benchmarking protocols. Phys. Rev. A 89, 062321 (2014).

    Article  ADS  Google Scholar 

  20. Xia, T. et al. Randomized benchmarking of single-qubit gates in a 2D array of neutral-atom qubits. Phys. Rev. Lett. 114, 100503 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Kwon, M., Ebert, M. F., Walker, T. G. & Saffman, M. Parallel low-loss measurement of multiple atomic qubits. Phys. Rev. Lett. 119, 180504 (2017).

    Article  ADS  PubMed  Google Scholar 

  22. Brown, N. C. & Brown, K. R. Leakage mitigation for quantum error correction using a mixed qubit scheme. Phys. Rev. A 100, 032325 (2019).

    Article  ADS  CAS  Google Scholar 

  23. Hayes, D. et al. Eliminating leakage errors in hyperfine qubits. Phys. Rev. Lett. 124, 170501 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Ghosh, J., Fowler, A. G., Martinis, J. M. & Geller, M. R. Understanding the effects of leakage in superconducting quantum-error-detection circuits. Phys. Rev. A 88, 062329 (2013).

    Article  ADS  Google Scholar 

  25. Stace, T. M., Barrett, S. D. & Doherty, A. C. Thresholds for topological codes in the presence of loss. Phys. Rev. Lett. 102, 200501 (2009).

    Article  ADS  PubMed  Google Scholar 

  26. Varbanov, B. M. et al. Leakage detection for a transmon-based surface code. Preprint at (2020).

  27. Bombin, H. & Martin-Delgado, M. A. Topological quantum distillation. Phys. Rev. Lett. 97, 180501 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Vodola, D., Amaro, D., Martin-Delgado, M. A. & Müller, M. Twins percolation for qubit losses in topological color codes. Phys. Rev. Lett. 121, 060501 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Calderbank, A. R. & Shor, P. W. Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Steane, A. M. Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  31. Mølmer, K. & Sørensen, A. Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835–1838 (1999).

    Article  ADS  Google Scholar 

  32. Choi, M.-D. Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  33. Knill, E. Quantum computing with realistically noisy devices. Nature 434, 39–44 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Aliferis, P., Gottesman, D. & Preskill, J. Quantum accuracy threshold for concatenated distance-3 codes. Quantum Inf. Comput. 6, 97–165 (2006).

    MathSciNet  MATH  Google Scholar 

Download references


We gratefully acknowledge funding by the US Army Research Office (ARO) through grant number W911NF-14-1-0103. We also acknowledge funding by the Austrian Science Fund (FWF), through the SFB BeyondC (FWF Project number F71), by the Austrian Research Promotion Agency (FFG) contract 872766, by the EU H2020-FETFLAG-2018-03 under Grant Agreement number 820495, and by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via US ARO Grant number W911NF-16-1-0070. All statements of fact, opinions or conclusions contained herein are those of the authors and should not be construed as representing the official views or policies of ODNI, the IARPA, or the US Government. We acknowledge support from the Samsung Advanced Institute of Technology Global Research Outreach. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement number 801110 and the Austrian Federal Ministry of Education, Science and Research (BMBWF). The information provided in this Article reflects only the authors’ views; the EU Agency is not responsible for any use that may be made of this information.

Author information

Authors and Affiliations



D.V. and M. Müller derived the theory results. R.S., A.E., L.P., M. Meth, M.R., P.S. and T.M. performed the experiments. R.S. analysed the data. T.M., M. Müller and R.B. supervised the project. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Roman Stricker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Tom Stace and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Sections 1–5, which contain further experimental and theoretical results and details on the detection and correction of qubit loss. It includes Supplementary Figures 1–6 and Supplementary Tables 1–3.

Peer review file.

Supplementary Data This file contains source data for Supplementary Figures 2–6 and Supplementary Tables 1–3.

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stricker, R., Vodola, D., Erhard, A. et al. Experimental deterministic correction of qubit loss. Nature 585, 207–210 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing