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            Abstract
Lipopolysaccharide (LPS) resides in the outer membrane of Gram-negative bacteria where it is responsible for barrier function1,2. LPS can cause death as a result of septic shock, and its lipid A core is the target of polymyxin antibiotics3,4. Despite the clinical importance of polymyxins and the emergence of multidrug resistant strains5, our understanding of the bacterial factors that regulate LPS biogenesis is incomplete. Here we characterize the inner membrane protein PbgA and report that its depletion attenuates the virulence of Escherichia coli by reducing levels of LPS and outer membrane integrity. In contrast to previous claims that PbgA functions as a cardiolipin transporter6,7,8,9, our structural analyses and physiological studies identify a lipid A-binding motif along the periplasmic leaflet of the inner membrane. Synthetic PbgA-derived peptides selectively bind to LPS in vitro and inhibit the growth of diverse Gram-negative bacteria, including polymyxin-resistant strains. Proteomic, genetic and pharmacological experiments uncover a model in which direct periplasmic sensing of LPS by PbgA coordinates the biosynthesis of lipid A by regulating the stability of LpxC, a key cytoplasmic biosynthetic enzyme10,11,12. In summary, we find that PbgA has an unexpected but essential role in the regulation of LPS biogenesis, presents a new structural basis for the selective recognition of lipids, and provides opportunities for future antibiotic discovery.
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                    Fig. 1: PbgA is essential for outer membrane integrity.[image: ]


Fig. 2: PbgA structural features.[image: ]


Fig. 3: The periplasmic lipid A-binding motif of PbgA.[image: ]


Fig. 4: PbgA detects periplasmic LPS levels to regulate LpxC stability.[image: ]
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              Structural data are deposited in the Protein Data Bank (PDB) under accession number 6XLP. All mass spectrometry RAW files were uploaded to the MassIVE data repository, accessible by the identifier MSV000083754, and can be downloaded from ftp://MSV000083754@massive.ucsd.edu. DNA sequencing data were deposited at NCBI under BioProject PRJNA541088, BioSample SAMN11572257, experiment SRX5788703, run SRR9010525. The E. coli CFT073 reference genome was deposited at NCBI under BioProject PRJNA624646, BioSample SAMN14575425, accession CP051263. Source data are provided with this paper.
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Extended data figures and tables

Extended Data Fig. 1 In vivo and in vitro characterization of E. coli ΔpbgA and ΔclsABC strains.
a, CFUs recovered from UPEC and UPEC ΔpbgA in neutropenic mouse tissues after intravenous injection of BALB/C mice 0.5 and 24 h after injection (n = 5 per group). Data are mean ± s.d. with dashed line indicating lower boundary of detection. b, Rifampicin sensitivity assay with conditional E. coli K-12 ΔpbgA::pBADpbgA strain. Data are mean ± s.d. for at each rifampicin concentration for n = 3 of each strain. c, Rifampicin sensitivity assay with E. coli K-12 and ΔclsABC strains. Data are mean ± s.d. for each rifampicin concentration for n = 3 of each strain. d, Quantification of lipid A and cardiolipin measured by MALDI–TOF and Qtrap liquid chromatography–tandem mass spectrometry (LC–MS/MS), respectively, normalized to total protein amounts in whole cells (left and middle) or outer membrane vesicles (right). AUC, area under the curve. Data are mean ± s.d. for each strain for n = 3 replicates. e, MALDI–TOF mass spectrometry analyses detected no cardiolipin in the ΔclsABC strain (orange) compared to the E. coli K-12 strain (black) when analysed under matched conditions. Representative results are shown.
Source data


Extended Data Fig. 2 Biophysical and structural characterization of PbgA.
a, E. coli and S. typhimurium PbgA were purified in the mild detergent dodecylmaltoside and analysed by SEC-MALS. b, Thermostability of purified E. coli PbgA was analysed by differential scanning calorimetry with or without 0.1 mg ml−1 lipid supplementation. c, Left, from PbgA crystalized in space group C2, using data to 2.0 Å, an Fo − Fc map calculated shows bilobal extra electron density along the periplasmic membrane leaflet before the inclusion of LPS into models, 3σ contour. Inset, close-up view of an Fo − Fc map calculated before the inclusion of LPS into the model, rendered at 8σ (yellow) and 2σ (blue), respectively. Final refined coordinates of lipid A are shown for reference. Right, from PbgA crystalized in space group P31, using data to 4.6 Å, an Fo − Fc map calculated before the inclusion of LPS into the model, contoured at 3σ. d, Representative non-protein densities observed surrounding the TMD of PbgA that were assigned as putative phosphatidylethanolamine or monoolein lipids; inset shows Fo − Fc maps calculated before the inclusion of phosphatidylethanolamine or monoolein into the model, 2σ contour (phosphatidylethanolamine, orange; monoolein, blue). e, Schematic illustration of the inter-domain surface area contacts within PbgA. f, Close-up view highlighting the interaction of the Arg215 side chain with a conserved acidic residue, Asp192 on TM5, which appears to stabilize the IFD–TMD interface.


Extended Data Fig. 3 PbgA structural alignments and molecular dynamics simulations.
a, Structural superposition of PbgA crystal structures determined in the present study (space group C2 and P31) and both chain A and chain B from PDB code 6V8Q. The overall root mean square deviation for main chain atoms between the most divergent structures is <0.8 Å. b, Molecular dynamics study of PbgA, results (top) and experiments (bottom) are summarized by illustration. Simulations were performed following preparation of the 2.0 Å PbgA crystal structure and its placement into a phosphatidylethanolamine: phosphatidylglycerol mixed membrane bilayer, as described in Methods. Top, superimposed are coordinates from the last frames of the four molecular dynamics simulation runs with the starting (non-relaxed) X-ray model to compare the extent of domain movements. c, Views of the previously proposed cardiolipin-binding site8 are shown on the right. Residues proposed to be involved in cardiolipin binding are shown as orange sticks, but are seen here to form an integral part of the hydrophobic protein core; furthermore, the periplasmic domain of PbgA contains no recognizable sequence or structural homology to previously established lipid binding modules56,70. d, Structure-based alignment of the hydrolase superfamily domains from PbgA (periplasmic domain, green), S. aureus LtaS22 (ECD, blue) and E. coli phosphoethanolamine transferase MCR-171 (periplasmic domain, purple). e, Structure-based alignment of PbgA and EptA isolated periplasmic domains (left) and TMDs (right), respectively.


Extended Data Fig. 4 LPS co-purifies and is bound to PbgA.
a, Calculated using data to 2.0 Å, an Fo − Fc map near the α7 helix of the IFD (pink) before inclusion of any ligand into refinement, 2σ contour (green). LPS refines well into this electron density whereas cardiolipin does not (see Extended Data Fig. 2c). Modelling and crystallographic refinement was pursued for cardiolipin, phosphatidylethanolamine, phosphatidylglycerol, monoolein and lauryl maltose neopentyl glycol (LMNG) detergent, but all efforts returned unacceptable refinement outcomes and maps. A 2Fo − Fc map following the inclusion of LPS into the refinement (blue, 0.8σ contour) is shown for reference. b, LPS quantification from proteins purified under matched conditions and subjected to a limulus amebocyte lysate assay. MsbA, the inner membrane LPS transporter from E. coli29,72, was purified from a recombinant E. coli expression host and HEK293 cells (MsbA293) for comparison. Lnt is an inner membrane protein involved that is not known or expected to bind or transport LPS73, and was expressed and purified from E. coli for comparison. Experiments were run in duplicate at three different protein concentrations with similar results, where duplicate experiment with 25 ng ml−1 and 100 ng ml−1 protein are shown. c, MALDI–TOF mass spectrometry detects various lipid A species from purified PbgA, including an arabinose-modified species (black). No lipid A species were detected from Lnt purified and analysed under matched conditions (orange).


Extended Data Fig. 5 Sequence alignment of then PbgA homologues.
Sequence alignment of ten PbgA sequences from Enterobacteriaceae Gram-negative bacteria. Domain boundaries are based on E. coli PbgA structure are indicated, including the lipid A-binding motif (red shade) and pseudo-hydrolase active site residues (orange triangles).


Extended Data Fig. 6 PbgA mutants and outer membrane permeability.
a, All UPEC-ΔpbgA bacteria tested in the rifampicin sensitivity assay were probed by western blot analysis to confirm PbgA–Flag expression. GroEL was assessed as a loading control. Representative blots for n = 3 or more experiments are shown. b, Outer membrane permeability of UPEC ΔpbgA strains with pBADpbgA plasmids expressing wild-type or mutant pbgA assessed by rifampicin sensitivity, where MTR-AVA is the M212A/T213V/R216A PbgA triple mutant. Data are representative and presented as mean ± s.d. for n = 3 or more independent cultures. Note, see Extended Data Fig. 2f for a view of the salt-bridge interaction between R215 (IFD) and a conserved TMD acidic residue, D192.


Extended Data Fig. 7 Characterization of PbgA-derived, synthetic LAB peptides.
a, Biotinylated LAB peptides were captured and interferometry measurements measured upon presenting peptides to different concentrations of detergent solubilized lipids (LPS, phosphatidylethanolamine, phosphatidylglycerol and cardiolipin). Three independent experiments were performed and data shown are representative. b, CFUs of E. coli ATCC 25922 measured over time with LABv2.1 and polymyxin B. Data are mean ± s.d. for n = 3 independent cultures. c, A red blood cell (RBC) lysis assay evaluated after 18 h in the presence of indicated compounds (Methods). Data are mean ± s.d. (n = 3) for each compound tested. d, A RBC lysis assay comparing LABv2.1 precursors (LABWT, LABWT+, LABv2.0) and LABv2.1 analogues designed, based on the LPS–PbgA crystal structure, to disrupt specific interactions of lipid A (LABv2.1_Dap213Thr, LABv2.1_Dap213Arg, LABv2.1_Dap212-Met213). Data are mean ± s.d. for n = 3 independent assay of each compound at each concentration.


Extended Data Fig. 8 PbgA interacts with LapB to regulate LpxC stability.
a, Proteins identified by mass spectrometry following co-immunoprecipitation of endogenous PbgA using the anti-PbgA monoclonal antibody 7E7 (n = 3 independent experiments). Hits were classified based on abundance (sum of PSMs) and enrichment in PbgA IPs compared to control purifications (SAINT logOddsScore: anti-PbgA monoclonal antibody 7E7 versus anti-gp120). Identified proteins with a Bayesian FDR <10% are highlighted in red. b, Bacterial two-hybrid system using PbgA-prey and different bait proteins in E. coli cells. Interacting proteins lead to blue colonies on agar plates containing X-gal, whereas non-interacting proteins produce white colonies. A representative agar plate is shown (n = 3) and activity was confirmed in broth cultures. c, Growth of a conditional E. coli K-12 ΔpbgA::pBAD-pbgA after depletion of PbgA in the presence of a IPTG-inducible plasmid expressing wild-type lapB or plsY (Methods) demonstrates that lapB expression does not rescue growth after PbgA depletion. Representative plates are shown and growth assay was repeated three or more times. d, Cell lysates prepared from overnight streaks of E. coli K-12 with pBADpbgA wild-type or mutant plasmids were probed with anti-LpxC, anti-PbgA and anti-GroEL antibodies (Methods), indicating that disturbing the LPS–PbgA interaction interface leads to LpxC stabilization. Representative blots from n = 3 biological replicates are shown. e, Western blot analysis of LpxC after treatment with 1 μM (2× MIC) or 4 μM (8× MIC) of the small molecule MsbA inhibitor G’913, indicating that selective inhibition of MsbA29,44 and LPS transport impacts LpxC levels; GroEL is the loading control and a representative experiment (n = 3 independent experiments) is shown. f, E. coli K-12 ΔlptD::pBADlptD lysates prepared from cells grown in indicated concentration of arabinose were probed with anti-LpxC, anti-LptD and anti-GroEL antibodies (Methods). Representative blots from n = 3 biological replicates are shown. g, Bacterial two-hybrid assays using LapB-bait (pUT18-lapB) and indicated PbgA-mutant prey constructs (pKT25-pbgA) in E. coli DHM1 cells were performed (Methods). Interacting proteins lead to blue colonies, whereas non-interacting proteins produce white colonies. Note that EptATM–PbgAIFD+PD is a chimeric construct in which the TMD of PbgA has been replaced with the TMD region from EptA23. Representative plates from n = 3 culture streaks are shown. h, Growth of conditional PbgA strain (E. coli ΔpbgA::pBADpbgA) in the absence of arabinose inducer complemented with, clockwise from the top of plate, wild-type pbgA (PbgAWT), pbgA encoding only the TMD (PbgATM only), or a negative control (malE) on plasmids. A representative plate (n = 3) is shown. i. Cell lysates of the conditional pbgA strain (E. coli ΔpbgA::pBADpbgA) in the absence of arabinose inducer complemented with wild-type pbgA or pbgA encoding only the TMD were probed with anti-LpxC antibody (Methods). A representative blot for n = 3 independent experiments is shown. j, Plasmids encoding acpT (right side of plate) or acpS (left side of plate) in conditional-pbgA strain grown in the absence of the pBADpbgA inducer arabinose, with 0.1 mM IPTG at 30 °C. A representative growth plate (n = 3) was imaged. k, Cultures with plasmids expressing pbgA, acpT, acpS, or malE (control) were shifted to no arabinose/plus IPTG if necessary to deplete PbgA (Methods). A representative blot from at least n = 3 biological replicates is shown.


Extended Data Fig. 9 A previous PbgA crystal structure reported to have cardiolipin bound at the IFD is, instead, more consistent with bound lipid A.
a, At the inner membrane–periplasmic interface that we term the IFD: cardiolipin (named CL2)7 from chain A (left) and chain B (middle) of PDB 6V8Q are shown in stick representation; PbgA is removed for clarity. Similarly, lipid A is shown in stick representation taken from the high-resolution crystal structure presented in this work (right). Molecular clashes calculated using the MOE software74 indicate high-energy atomic distance and poor geometry (green lines) in both chains A and B from PDB 6V8Q. The extent of the intramolecular clash is indicated by the relative size of the green circle. b, An Fo − Fc map calculated using coordinates and structure factors from PDB 6V8Q chain A (left) and chain B (middle) shows a strong negative peak (−3σ, red mesh; −4σ, blue mesh) on the assigned modelled P2 phosphate position of the CL2 ligand. Right, the LPS–PbgA complex determined in this work is superimposed onto chain B of PDB 6V8Q for reference, with no further adjustments. c, An Fo − Fc map calculated using coordinates and structure factors from PDB 6V8Q, with CL2 omitted from the calculation, shows strong positive peaks (4σ and 7.5σ for chain A and B, respectively; green mesh), which, in both cases, appear better described by the LPS–PbgA complex structure determined in this work. Shown (right) is the LPS–PbgA complex superimposed onto chain B of PDB 6V8Q with no further adjustments. d, The same Fo − Fc map calculation as in c, only contoured to 3σ (green mesh). As seen on the right, when superimposed onto chain B of 6V8Q, the proximal 1-phospho-GlcNAc group of lipid A in our LPS–PbgA structure appears especially well accounted for by positive density peaks, and density consistent with a KDO sugar head group is also observed; and similar conclusions are reaching upon inspection of superposition onto chain A of 6V8Q (not shown).


Extended Data Fig. 10 Comparison of LPS coordination in PbgA to known selective and passive LPS-binding proteins.
PbgA (this study), MsbA (PDB code 6BPP), a selective LPS transporter29,72, LptB2FG (PDB code 6MHU), a selective LPS33,75, and TLR4-MD2 (PDB code 3VQ2), a high-affinity LPS receptor32,76, represent the examples of selective LPS-binding proteins with known structures. In these latter cases, the hydrophobic acyl chains of lipid A are increased and the bivalent and polar nature are the lipid A head group is exploited. Furthermore, note that Arg216 of PbgA, shown in stick representation, does not appear essential for binding LPS in vivo (see Fig. 3c). In addition, FhuA (PDB code 2FCP), found with LPS complexed along the outer leaflet region of this outer membrane protein barrel34, and OmpE36 (PDB code 5FVN), which has also revealed numerous LPS contacts along the barrel35, are shown for completeness and comparison. Notably, analogous to MsbA, LptB2FG and TLR4, hydrophobic and aromatic side chains make several contacts in FhuA and OmpE36 with the acyl chains of lipid A (not shown for clarity) and polar and basic side chains coordinate the bivalent lipid A head group. In all cases, the lipid A coordination schemes are distinct from what is observed in the LPS–PbgA complex (also see Fig. 3).
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