Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A subradiant optical mirror formed by a single structured atomic layer

Abstract

Versatile interfaces with strong and tunable light–matter interactions are essential for quantum science1 because they enable mapping of quantum properties between light and matter1. Recent studies2,3,4,5,6,7,8,9,10 have proposed a method of controlling light–matter interactions using the rich interplay of photon-mediated dipole–dipole interactions in structured subwavelength arrays of quantum emitters. However, a key aspect of this approach—the cooperative enhancement of the light–matter coupling strength and the directional mirror reflection of the incoming light using an array of quantum emitters—has not yet been experimentally demonstrated. Here we report the direct observation of the cooperative subradiant response of a two-dimensional square array of atoms in an optical lattice. We observe a spectral narrowing of the collective atomic response well below the quantum-limited decay of individual atoms into free space. Through spatially resolved spectroscopic measurements, we show that the array acts as an efficient mirror formed by a single monolayer of a few hundred atoms. By tuning the atom density in the array and changing the ordering of the particles, we are able to control the cooperative response of the array and elucidate the effect of the interplay of spatial order and dipolar interactions on the collective properties of the ensemble. Bloch oscillations of the atoms outside the array enable us to dynamically control the reflectivity of the atomic mirror. Our work demonstrates efficient optical metamaterial engineering based on structured ensembles of atoms4,8,9 and paves the way towards controlling many-body physics with light5,6,11 and light–matter interfaces at the single-quantum level7,10.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Setup of the experiment and cooperative optical response.
Fig. 2: Cooperative response for two different array geometries.
Fig. 3: Cooperative response versus filling fraction in the 2D array.
Fig. 4: Cooperative response under Bloch oscillation.
Fig. 5: Limitations to the cooperative response of the 2D array.

Similar content being viewed by others

Data availability

The experimental data that support the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The simulation results can be generated using the numerical methods described within Methods and Supplementary Information and the computer code developed, which are available upon reasonable request.

References

  1. Chang, D. E., Douglas, J. S., González-Tudela, A., Hung, C.-L. & Kimble, H. J. Quantum matter built from nanoscopic lattices of atoms and photons. Rev. Mod. Phys. 90, 031002 (2018).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Porras, D. & Cirac, J. I. Collective generation of quantum states of light by entangled atoms. Phys. Rev. A 78, 053816 (2008).

    Article  ADS  CAS  Google Scholar 

  3. Jenkins, S. D. & Ruostekoski, J. Controlled manipulation of light by cooperative response of atoms in an optical lattice. Phys. Rev. A 86, 031602 (2012).

    Article  ADS  CAS  Google Scholar 

  4. Jenkins, S. & Ruostekoski, J. Metamaterial transparency induced by cooperative electromagnetic interactions. Phys. Rev. Lett. 111, 147401 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. González-Tudela, A., Hung, C. L., Chang, D. E., Cirac, J. I. & Kimble, H. J. Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals. Nat. Photon. 9, 320–325 (2015).

    Article  ADS  CAS  Google Scholar 

  6. Douglas, J. S. et al. Quantum many-body models with cold atoms coupled to photonic crystals. Nat. Photon. 9, 326–331 (2015).

    Article  ADS  CAS  Google Scholar 

  7. Facchinetti, G., Jenkins, S. D. & Ruostekoski, J. Storing light with subradiant correlations in arrays of atoms. Phys. Rev. Lett. 117, 243601 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Bettles, R. J., Gardiner, S. A. & Adams, C. S. Enhanced optical cross section via collective coupling of atomic dipoles in a 2D array. Phys. Rev. Lett. 116, 103602 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Shahmoon, E., Wild, D. S., Lukin, M. D. & Yelin, S. F. Cooperative resonances in light scattering from two-dimensional atomic arrays. Phys. Rev. Lett. 118, 113601 (2017).

    Article  ADS  PubMed  Google Scholar 

  10. Asenjo-Garcia, A., Moreno-Cardoner, M., Albrecht, A., Kimble, H. J. & Chang, D. E. Exponential improvement in photon storage fidelities using subradiance and “selective radiance” in atomic arrays. Phys. Rev. X 7, 031024 (2017).

    Google Scholar 

  11. Noh, C. & Angelakis, D. G. Quantum simulations and many-body physics with light. Rep. Prog. Phys. 80, 016401 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Lehmberg, R. H. Radiation from an N-atom system. I. General formalism. Phys. Rev. A 2, 883–888 (1970).

    Article  ADS  Google Scholar 

  13. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    Article  ADS  CAS  MATH  Google Scholar 

  14. Gross, M. & Haroche, S. Superradiance: an essay on the theory of collective spontaneous emission. Phys. Rep. 93, 301–396 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Back, P., Zeytinoglu, S., Ijaz, A., Kroner, M. & Imamoğlu, A. Realization of an electrically tunable narrow-bandwidth atomically thin mirror using monolayer MoSe2. Phys. Rev. Lett. 120, 037401 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Scuri, G. et al. Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride. Phys. Rev. Lett. 120, 037402 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Asenjo-Garcia, A., Hood, J. D., Chang, D. E. & Kimble, H. J. Atom–light interactions in quasi-one-dimensional nanostructures: a Green’s-function perspective. Phys. Rev. A 95, 033818 (2017).

    Article  ADS  Google Scholar 

  18. Chomaz, L., Corman, L., Yefsah, T., Desbuquois, R. & Dalibard, J. Absorption imaging of a quasi-two-dimensional gas: a multiple scattering analysis. New J. Phys. 14, 055001 (2012).

    Article  ADS  CAS  Google Scholar 

  19. Jenkins, S. D., Ruostekoski, J., Papasimakis, N., Savo, S. & Zheludev, N. I. Many-body subradiant excitations in metamaterial arrays: experiment and theory. Phys. Rev. Lett. 119, 053901 (2017).

    Article  ADS  PubMed  Google Scholar 

  20. van Loo, A. F. et al. Photon-mediated interactions between distant artificial atoms. Science 342, 1494–1496 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Mirhosseini, M. et al. Cavity quantum electrodynamics with atom-like mirrors. Nature 569, 692–697 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. DeVoe, R. G. & Brewer, R. G. Observation of superradiant and subradiant spontaneous emission of two trapped ions. Phys. Rev. Lett. 76, 2049–2052 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Guerin, W., Araújo, M. O. & Kaiser, R. Subradiance in a large cloud of cold atoms. Phys. Rev. Lett. 116, 083601 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Solano, P., Barberis-Blostein, P., Fatemi, F. K., Orozco, L. A. & Rolston, S. L. Super-radiance reveals infinite-range dipole interactions through a nanofiber. Nat. Commun. 8, 1857 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    Article  ADS  CAS  Google Scholar 

  26. Bakr, W. S., Gillen, J. I., Peng, A., Fölling, S. & Greiner, M. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74–77 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Sherson, J. F. et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Weitenberg, C. et al. Single-spin addressing in an atomic Mott insulator. Nature 471, 319–324 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Meir, Z., Schwartz, O., Shahmoon, E., Oron, D. & Ozeri, R. Cooperative Lamb shift in a mesoscopic atomic array. Phys. Rev. Lett. 113, 193002 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Preiss, P. M. et al. Strongly correlated quantum walks in optical lattices. Science 347, 1229–1233 (2015).

    Article  ADS  MathSciNet  CAS  MATH  PubMed  Google Scholar 

  31. Ye, J., Kimble, H. J. & Katori, H. Quantum state engineering and precision metrology using state-insensitive light traps. Science 320, 1734–1738 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Perczel, J. et al. Topological quantum optics in two-dimensional atomic arrays. Phys. Rev. Lett. 119, 023603 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Bettles, R. J., Minář, J., Adams, C. S., Lesanovsky, I. & Olmos, B. Topological properties of a dense atomic lattice gas. Phys. Rev. A 96, 041603 (2017).

    Article  ADS  Google Scholar 

  34. Manzoni, M. T. et al. Optimization of photon storage fidelity in ordered atomic arrays. New J. Phys. 20, 083048 (2018).

    Article  ADS  CAS  Google Scholar 

  35. Scully, M. O. Single photon subradiance: quantum control of spontaneous emission and ultrafast readout. Phys. Rev. Lett. 115, 243602 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Guimond, P.-O., Grankin, A., Vasilyev, D. V., Vermersch, B. & Zoller, P. Subradiant Bell states in distant atomic arrays. Phys. Rev. Lett. 122, 093601 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Černotík, O. V., Dantan, A. & Genes, C. Cavity quantum electrodynamics with frequency-dependent reflectors. Phys. Rev. Lett. 122, 243601 (2019).

    Article  ADS  PubMed  Google Scholar 

  38. Shahmoon, E., Lukin, M. D. & Yelin, S. F. Chapter one – collective motion of an atom array under laser illumination. Adv. Atom. Mol. Opt. Phys. 68, 1–38 (2019).

    Article  ADS  Google Scholar 

  39. Shahmoon, E., Lukin, M. D. & Yelin, S. F. Quantum optomechanics of a two-dimensional atomic array. Preprint at https://arxiv.org/abs/1810.01052 (2018).

  40. Bekenstein, R. et al. Quantum metasurfaces with atom arrays. Nat. Phys. 16, 676–681 (2020).

    Article  CAS  Google Scholar 

  41. He, Y. et al. Geometric control of collective spontaneous emission. Preprint at https://arxiv.org/abs/1910.02289 (2019).

  42. Henriet, L., Douglas, J. S., Chang, D. E. & Albrecht, A. Critical open-system dynamics in a one-dimensional optical-lattice clock. Phys. Rev. A 99, 023802 (2019).

    Article  ADS  CAS  Google Scholar 

  43. Zhang, Y.-X., Yu, C. & Mølmer, K. Subradiant bound dimer excited states of emitter chains coupled to a one dimensional waveguide. Phys. Rev. Res. 2, 013173 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Ruostekoski, E. Shahmoon, J. I. Cirac, R. Bettles, R. Bekenstein, S. Yelin and M. Zwierlein for discussions. We acknowledge funding by the Max Planck Society (MPG), the European Union (PASQuanS grant number 817482) and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2111 – 390814868. J.R. acknowledges funding from the Max Planck Harvard Research Center for Quantum Optics. J.Z. acknowledges support through a Feodor Lynen Fellowship by the Humboldt Foundation. D.M.S.-K. acknowledges support through a Carl Friedrich von Siemens Research Award from the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.R. acquired the data and, together with D.W. and A.R.-A., maintained and improved the experimental setup. D.W. contributed the theoretical simulations. C.G. and I.B. supervised the study. All authors worked on the interpretation of the data and contributed to the final manuscript.

Corresponding author

Correspondence to Jun Rui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Charles Adams, Darrick Chang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Supplementary Figures S1–S12.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rui, J., Wei, D., Rubio-Abadal, A. et al. A subradiant optical mirror formed by a single structured atomic layer. Nature 583, 369–374 (2020). https://doi.org/10.1038/s41586-020-2463-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-020-2463-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing