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            Abstract
Increased cardiac contractility during the fight-or-flight response is caused by Î²-adrenergic augmentation of CaV1.2 voltage-gated calcium channels1,2,3,4. However, this augmentation persists in transgenic murine hearts expressing mutant CaV1.2 Î±1C and Î² subunits that can no longer be phosphorylated by protein kinase Aâ€”an essential downstream mediator of Î²-adrenergic signallingâ€”suggesting that non-channel factors are also required. Here we identify the mechanism by which Î²-adrenergic agonists stimulate voltage-gated calcium channels. We express Î±1C or Î²2B subunits conjugated to ascorbate peroxidase5 in mouse hearts, and use multiplexed quantitative proteomics6,7 to track hundreds of proteins in the proximity of CaV1.2. We observe that the calcium-channel inhibitor Rad8,9, a monomeric G protein, is enriched in the CaV1.2 microenvironment but is depleted during Î²-adrenergic stimulation. Phosphorylation by protein kinase A of specific serine residues on Rad decreases its affinity for Î² subunits and relieves constitutive inhibition of CaV1.2, observed as an increase in channel open probability. Expression of Rad or its homologue Rem in HEK293T cells also imparts stimulation of CaV1.3 and CaV2.2 by protein kinase A, revealing an evolutionarily conserved mechanism that confers adrenergic modulation upon voltage-gated calcium channels.
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                    Fig. 1: Phosphorylation of Î±1C and Î² subunits by PKA is not required for Î²-adrenergic regulation of CaV1.2.[image: ]


Fig. 2: Changes in the CaV1.2 subdomain proteome upon Î²-adrenergic agonist activation of PKA signalling in the heart.[image: ]


Fig. 3: Phosphorylation of Rad is required for cAMPâ€“PKA-mediated activation of CaV1.2.[image: ]


Fig. 4: RGK GTPases confer adrenergic regulation to CaV1.2, CaV1.3 and CaV2.2 channels via binding to Î².[image: ]
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                Data and material availability

              
              All transgenic mice are available from S.O.M. under a material agreement with Columbia University. All data are available in the main text, the Extended Data or the Supplementary Information. Proteomics raw data and search results were deposited in the PRIDE archive and can be accessed via the ProteomeXchange under accession numbers PXD014499, PXD014500 and PXD014501. The FRET software is accessible on github at https://github.com/manubenjohny/FACS_FRET. Source data for Figs. 1â€“4 and Extended Data Figs. 1, 2, 6, 8 are provided with the paper.
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Extended data figures and tables

Extended Data Fig. 1 Putative PKA phosphorylation sites in Î±1C and Î²2B subunits.
a, Left column, the 35 putative PKA phosphorylation sites in rabbit Î±1C. Centre, the 51 residues in red are either predicted phosphorylation sites or within the immediate region of the predicted phosphorylation sites. Right, all 51 residues were replaced with alanine in 35-mutant Î±1C transgenic mice. b, Combined bar and column scatter plot of Boltzmann function parameters, V50. Data are meanÂ Â±Â s.e.m. **PÂ <Â 0.01; ***PÂ <Â 0.001; ****PÂ <Â 0.0001 by paired two-tailed t-test. pWT Î±, nÂ =Â 19; 35-Î± mutant, nÂ =Â 14; 28-Î² mutant, nÂ =Â 16; 35-Î± mutantÂ Ã—Â 28-Î² mutant, nÂ =Â 24. Specific PÂ values can be found in the associatedÂ Source Data (see Supplementary Information). c, Graph showing isoproterenol- and forskolin-induced increases in nisoldipine-resistant current, stratified by total basal current density before nisoldipine treatment. d, Left, the 28 putative PKA phosphorylation sites in the N-terminal (NT), Hook, GK and C-terminal (CT) domains of Î²2B. Centre, the 37 residues in red are either predicted phosphorylation sites or within the immediate vicinity of predicted phosphorylation sites, and were mutated to alanine in the 28-mutant GFP-tagged Î²2B transgenic mice (right). e, Fluorescence imaging of isolated cardiomyocytes expressing the GFP-tagged 28-Î² mutant. Representative of images from more than five biologically independent mice. f, Anti-Î²-subunit immunoblot of cleared lysates from doxycycline-fed 35-mutant Î±1C transgenic (TG) mice or 35-mutant Î±1C Ã— GFP-tagged 28-mutant Î²2B expressing mice hearts. Representative of immunoblots obtained from at least three biologically independent mice. g, Anti-Flag antibody (upper) and anti-Î² antibody (lower) immunoblots of anti-Flag antibody immunoprecipitations from cleared lysates of hearts from pWT, 35-Î± and three mice expressing 35-Î± Ã— GFP-tagged-28-Î². Representative images from two independent experiments. For source gel data, see Supplementary Fig. 1.

                          Source data
                        


Extended Data Fig. 2 Trafficking and function of APEX2-conjugated CaV1.2 subunits in heart.
a, Exemplar currentâ€“voltage relationship of Ca2+ currents from cardiomyocytes of Î±1Câ€“APEX2 mice, acquired in the absence (black trace) and presence (red trace) of nisoldipine. Insets show series of whole-cell CaV1.2 currents recorded from a series of voltage steps between âˆ’40Â mV and +60Â mV from a holding potential of âˆ’50Â mV. Scale bars, horizontal 100Â ms, vertical 10Â pA/pF. Representative of five experiments. b, Time course of changes in sarcomere length after superfusion of nisoldipine-containing solution. Representative of seven experiments. c, Percentage sarcomere shortening in the presence of nisoldipine. Data are meanÂ Â±Â s.e.m. ****PÂ <Â 0.0001 by unpaired two-tailed t-test. nÂ =Â 12 and 7 cardiomyocytes from left to right. NTG, nontransgenic. d, Immunofluorescence of cardiomyocytes isolated from mice expressing Î±1Câ€“APEX2 and Î²2Bâ€“APEX2, exposed to biotin-phenol and H2O2 or no H2O2. Staining is with anti-V5 and Alexa594-conjugated secondary antibodies and streptavidin-conjugated Alexa488, and nuclear labelling is with DAPI. Scale bar, 5Â Î¼m. Representative of 13 and 8Â cardiomyocytes from 2 and 3 mice respectively. e, Streptavidinâ€“HRP blot of lysates from isolated ventricular cardiomyocytes, representative of five similar experiments. f, Exemplar whole-cell CaV1.2 currents recorded from cardiomyocytes of Î±1Câ€“APEX2 transgenic mice. Black trace, 300Â nM nisoldipine; blue trace, 200Â nM isoproterenol plus nisoldipine. Representative of nine cells from two biologically independent mice. g, As in f, except from Î²2Bâ€“APEX2 mice. Black trace, control; blue trace, 200Â nM isoproterenol. Representative of seven experiments from two biologically independent mice. h, i, Anti-phospho-phospholamban immunoblot of proteins from cardiomyocytes isolated from Î±1Câ€“APEX2 and Î²2Bâ€“APEX2 mice. Cardiomyocytes were exposed to either vehicle or 1Â Î¼M isoproterenol after incubation with biotinâ€“phenol. Blots are representative of three independent experiments from at least five biologically independent mice for each genotype. j, As in hÂ and i, except that cardiomyocytes were isolated from non-transgenic mice without incubation with biotinâ€“phenol. Blot is representative of three independent experiments from three biologically independent mice. k, As Â hÂ and i, except that whole heart was exposed to 1Â Î¼M isoproterenol for 5Â min after infusion of biotin-phenol. This blot is representative of at least five biologically independent mice for no isoproterenol and at least five biologically independent mice for isoproterenol. For source gel data, see Supplementary Fig. 1.

                          Source data
                        


Extended Data Fig. 3 Analysis of proteins quantified by mass spectrometry in cardiomyocytes isolated from Î±1Câ€“APEX2 and Î²2Bâ€“APEX2 mice.
a, Proteins with a ratio of more than 2 (measured by normalized TMT signal/noise) in the indicated experimental conditions, compared with a no-labelling control (no H2O2), were sorted by spectral counts. The 150 proteins with the highest peptide counts are displayed in this colour-coded table. Î±1Câ€“APEX2 and Î²2Bâ€“APEX2 data were collected in biological duplicate experiments. Supplementary Table 1 shows all 3,883 proteins quantified by multiplexed SPS MS3 TMT mass spectrometry. b, Prefuse force-directed map of proteins from a. Peptide counts were used as weight. Proteins mapping to the GO term â€˜Z discâ€™ are in green, to â€˜membraneâ€™ in yellow, and to both are in purple. Î±1Câ€“APEX2 and Î²2Bâ€“APEX2 are in blue. c, GO term (cellular localization) enrichment for proteins in a. See Supplementary Table 2 for the full table.


Extended Data Fig. 4
Two-way hierarchical clustering of scaled data from Fig. 2. a, Dendrogram showing two-way hierarchical clustering of scaled TMT s/n data for streptavidin-purified proteins from Î±1Câ€“APEX2 cardiomyocytes after stimulation with vehicle or isoproterenol. Shown are scaled relative TMT protein quantification data for 1,951 proteins from biological quintuplicate Î±1Câ€“APEX2 mice. Clustering used Wardâ€™s minimum-variance method. b, Dendrogram showing two-way hierarchical clustering of scaled relative quantification data for 1,936 proteins from biological triplicate Î²2Bâ€“APEX2 experiments. Heterogeneity between cardiomyocyte preparations from different mice is apparent. c, Dendrogram showing two-way hierarchical clustering of scaled relative quantification data for 2,610 proteins from whole-organ Î±1Câ€“APEX without or with perfusion of isoproterenol. Prominent heterogeneity in relative protein quantification between hearts is apparent. The position of Rad is indicated by a red line. In this experiment, the individual hearts were not paired. d, Dendrogram showing two-way hierarchical clustering of scaled TMT s/n data from non-transgenic mouse cardiomyocytes stimulated with isoproterenol or with vehicle. Scaled data for 4,622 quantified proteins from a biological quadruplicate experiment are displayed. Pairing of samples is apparent.


Extended Data Fig. 5 Isoproterenol-induced change in Rad detected by mass spectrometry.
a, Right, the MS2 spectrum (top) and TMT quantification parameters (bottom) for a Rad peptide changed upon treatment of murine hearts with isoproterenol. Shown is the MS2 spectrum that was used to identify the Rad peptide IFGGIEDGPEAEAAGHTYDR. Left, m/z ratios for b and y ions identified in the spectrum and their deviation from theoretical m/z ratios. We measured the precursor mass as 778.71Â Da with a charge of +3. Peptide modifications were +229.16Â Da for TMT on the peptide N terminus and lysine residues, +57.02Â Da for cysteine alkylation and +15.99 for methionine oxidation. Shown are ion injection times, isolation specificity, sum of signal-to-noise (SN) over all TMT channels, TMT raw intensities, adjusted intensities and final SN intensities used for relative quantification, as well as synchronous precursor selection (SPS) ion m/z ratios (isolated in the ion trap with Notch filtering; â€˜Notch mzâ€™ denotes the ion m/z ratio of individual isolated SPS ions prior to HCD fragmentation and MS3). b, Table showing gene names of proteins with PÂ <Â 0.05 for the three approaches: cardiomyocytes isolated from Î±1Câ€“APEX and Î²2Bâ€“APEX mice, and Î±1Câ€“APEX hearts. Genes in yellow are common to all groups, but note that for Mast2, the foldÂ change is not consistent. Data are mean foldÂ changes for five pairs of biologically independent pairs of Î±1Câ€“APEX2 cardiomyocyte samples, three pairs of biologically independent pairs of Î²2Bâ€“APEX cardiomyocyte samples, and ten Î±1Câ€“APEX2 hearts, five without isoproterenol and five with isoproterenol. Non-adjusted unpaired two-tailed t-test. c, Venn diagram showing the data from b. Rrad, Rad; Prkaca, PKA catalytic subunit; Acss1, acyl-CoA synthetase short-chain family member 1. Rad is the only protein that is consistently changed amongst the three approaches.


Extended Data Fig. 6 Rad is required for forskolin-induced activation of heterologously expressed CaV1.2 channels.
a, Exemplar whole-cell CaV1.2 currents elicited from step depolarizations recorded from HEK293T cells expressing Rad. Voltage command steps were applied every 10Â s before (black traces) and during (blue traces) forskolin treatment. Representative of at least ten cells. b, Methodology used for generating G/V curves. i, Upper, a 200-ms voltage ramp from âˆ’60Â mV to +60Â mV was applied every 10Â s. Lower, current traces, each an average of three traces before (black) and three traces after (blue) forskolin treatment. ii, Conversion of time scale to applied voltage. iii, Conversion to Gâ€“V relationship. FoldÂ change was calculated at Gmax. c, Graph showing forskolin-induced foldÂ change in current, stratified by basal current density. d, Exemplar traces of Ba2+ currents in the absence and presence of Rad elicited by voltage ramp every 10Â s. Black traces, before forskolin treatment; blue traces after treatment; no Rad, 7 cells; Rad, 16 cells. e, Boltzmann function parameter V50. Data are meanÂ Â±Â s.e.m. **PÂ <Â 0.01 by paired two-tailed t-test. nÂ =Â 7 and 16, from left to right. f, g, Ratio of Ba2+ current after forskolin treatment to Ba2+ current before treatment for cells transfected without and with Rad. Representative of analyses for three cells for each condition. hâ€“l, Distribution of sweep-by-sweep average Po (single-trial Po) for different conditions. h, In the absence of Rad, sweeps with no openings or blank sweeps are rare (10%); most sweeps exhibit either intermediate or high levels of openings. i, The fraction of blank sweeps is increased with expression of Rad. j, If the PKA catalytic domain is also coexpressed with Rad, the fraction of blank sweeps is reduced and there is a resurgence of the high-activity mode. k, Pale blue lines show conditional Poâ€“voltage relationships obtained for sweeps exhibiting high activity in the absence of Rad and PKA. The dark blue line is the Boltzmann fit. l, As inÂ k, but with Rad and PKA expression.

                          Source data
                        


Extended Data Fig. 7 PKA phosphorylation sites in mouse Rad.
a, Serine/threonine residues (in purple) that are mutated to alanine in the 14-SA mutant. b, Mass-spectrometry identification of phosphorylated residues on Rad enriched with an anti-GFP nanobody matrix, from HEK cells expressing GFPâ€“Rad and treated with forskolin. The number of spectral counts is plotted against the position of the phosphorylated amino acids in Rad. We detected 534 aggregated phosphopeptides in two independent experiments. c, Database entry for phosphorylation sites identified previously in Rad (https://phosphomouse.hms.harvard.edu/site_view.php?ref=IPI00133102). The highest level of Rad phosphorylation was detected in the heart (left panel). The lower right panel shows peptides detected with phosphorylated serine residues on positions 25, 38 and 300 (in bold red; mapped to the Rad expression constructs used here; blue highlighting indicates sequence covered by peptides). d, Serine residues mutated to alanine in the 4-SA mutant (arrows).


Extended Data Fig. 8 Binding of Rad and Î²2B is required for regulation of forskolin-induced stimulation of voltage-gated Ca2+ channels.
a, The Rad protein sequence shown here indicates the residues Arg208 and Leu235 that were substituted with alanine (yellow). b, The Î²2B protein sequence indicates the residues Asp244, Asp320 and Asp322 that were substituted with alanine (yellow), resulting in attenuation of Rad binding to the Î² subunit, as described previously28,29. c, Ba2+ currents from CaV1.2 channels, elicited by voltage ramp every 10Â s from âˆ’60Â mV to +60Â mV over 200Â ms, before (black) and after (blue) treatment with forskolin. Representative of 20 (top) and 15 (bottom) cells. d, Boltzmann function parameter V50. Data are meanÂ Â±Â s.e.m. ***PÂ <Â 0.001 by paired two-tailed t-test. The data for wild-type Rad are the same as in Fig. 3h. Specific PÂ values can be found in the associated Source Data. nÂ =Â 16, 19 and 13, from left to right. e, FoldÂ change in Gmax in Cav1.3 channels. Data are meanÂ Â±Â s.e.m. PÂ <Â 0.0001 by one-way ANOVA; ****PÂ <Â 0.0001 by Dunnettâ€™s test. The data for wild-type Rad and wild-type Î²2B are the same as in Fig. 4e. nÂ =Â 7, 7 and 9 cells, from left to right. f, FoldÂ change in Gmax in Cav2.2 channels. Data are meanÂ Â±Â s.e.m. PÂ <Â 0.001 by one-way ANOVA; ***PÂ <Â 0.001 by Dunnettâ€™s test. Data for wild-type Rad and wild-type Î²2B are as in Fig. 4h. nÂ =Â 11, 7 and 8 cells, from left to right.

                          Source data
                        


Extended Data Fig. 9 Phosphorylation-dependent dissociation of Rad, Î²3 and Î²4 subunits.
a, b, FRET two-hybrid binding isotherms were determined for Cer-tagged Î²3 (a) and Î²4 (b) subunits, and N-terminal Ven-tagged wild-type (left) or 4-SA mutant (right) Rad. FRET efficiency (ED) is plotted against the free concentration Venâ€“WT or Venâ€“4SA-mutant Rad. The solid line fits a 1/1 binding isotherm. Coexpression of the PKA catalytic subunit weakened binding in cells expressing wild-type Rad, but not in cells expressing 4-SA mutant Rad. c, Bar graph summarizing mean Kd,EFF for Î²2B, Î²3 and Î²4, and wild-type and 4-SA mutant Rad, expressed without and with the PKA catalytic subunit. Data are meanÂ Â±Â 95% confidence intervals; error bars show 95% confidence intervals for the pooled nonlinear fits based on the Jacobians computed. The sample size for each condition is 1,580â€“10,364 cells, acquired via two independent transfections and then pooled. The distribution of data in this graph is reflected in Fig. 4b, c, and in a, b.


Extended Data Fig. 10 ClustalW alignment of Rad sequences and RGK GTPases.
a, Conservation of phosphorylation sites from mouse Rad (Ser25, Ser38, Ser272 and Ser300) in other species. Blue highlights basic amino acids (arginine, lysine and histidine), and red highlights serine and threonine. b, C-terminal phosphorylation sites are conserved in other species. The equivalent of the Ser25 phosphorylation site is conserved in Rem1, and the equivalent of Ser38 is probably conserved in Gem. Phosphorylation sites in mouse Rad (Ser25, Ser38, Ser272 and Ser300) are indicated with arrows. Blue highlights basic amino acids (arginine, lysine and histidine), and red highlights serine and threonine.





Supplementary information
Supplementary Figure 1
Raw, uncropped data for gels.


Reporting Summary

Supplementary Table 1
Mass spectrometry data acquired from isolated cardiomyocytes of Î±1C-APEX2 and Î²2B-APEX2 mice. The full table with 3883 proteins quantified by multiplexed SPS MS3 TMT mass spectrometry. Comparison of no biotin-label vs. biotin-label. n=2 Î±1C mice and n=2 Î²2B mice.


Supplementary Table 2
Gene Ontology analysis. Proteins with a ratio of >2 (measured by normalized TMT signal/noise) in the experimental conditions compared to a no-labeling control (no H2O2) were sorted by spectral counts. Peptide counts were used as weight. Table was generated for the 150 proteins with highest peptide counts as output of the BINGO tool (Maere, S., Heymans, K. & Kuiper, M. Bioinformatics 21, 3448-3449, doi:10.1093/bioinformatics/bti551 (2005)) to determine statistically overrepresented Gene Ontology (GO) categories. Table shows GO term (cellular localization) enrichment for proteins in Extended Data Fig. 3a.


Supplementary Table 3
Mass spectrometry data acquired from isolated cardiomyocytes of Î±1C-APEX2 mice. Data were used to create volcano plot of foldÂ change for relative protein quantification by TMT mass spectrometry of Î±1C-APEX2 samples (Fig. 2e). Data shown are means for 5 pairs of biologically independent samples. Non-adjusted unpaired two-tailed t-test between isoproterenol vs. no isoproterenol.


Supplementary Table 4
Mass spectrometry data acquired from isolated cardiomyocytes of Î²2B-APEX2 mice. Data were used to create volcano plot of foldÂ change for relative protein quantification by TMT mass spectrometry of Î²2B-APEX2 samples (Fig. 2f). Data shown are means for 3 pairs of biologically independent samples. Non-adjusted unpaired two-tailed t-test between isoproterenol vs. no isoproterenol.


Supplementary Table 5
Mass spectrometry data acquired from hearts of Î±1C-APEX2 mice. Data were used to create volcano plot of foldÂ change for relative protein quantification by TMT mass spectrometry of Î±1C-APEX2 samples (Fig. 2h). Data shown are means for 10 hearts, 5 without isoproterenol and 5 with isoproterenol. Non-adjusted unpaired two-tailed t-test between isoproterenol vs. no isoproterenol.


Supplementary Table 6
Mass spectrometry data acquired from hearts of non-transgenic mice. Data were used to create volcano plot of foldÂ change for relative protein quantification by TMT mass spectrometry (Fig. 2j). Data shown are means for 4 pairs of biologically independent samples. Non-adjusted unpaired two-tailed t-test between isoproterenol vs. no isoproterenol.
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