Harnessing innate immunity in cancer therapy

A Publisher Correction to this article was published on 20 November 2019

This article has been updated

Abstract

New therapies that promote antitumour immunity have been recently developed. Most of these immunomodulatory approaches have focused on enhancing T-cell responses, either by targeting inhibitory pathways with immune checkpoint inhibitors, or by targeting activating pathways, as with chimeric antigen receptor T cells or bispecific antibodies. Although these therapies have led to unprecedented successes, only a minority of patients with cancer benefit from these treatments, highlighting the need to identify new cells and molecules that could be exploited in the next generation of immunotherapy. Given the crucial role of innate immune responses in immunity, harnessing these responses opens up new possibilities for long-lasting, multilayered tumour control.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The cancer–innate immunity cycle.
Fig. 2: The role of type I IFNs in the articulation between innate immunity and T-cell antitumour immunity.

Change history

  • 20 November 2019

    An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Okazaki, T. & Honjo, T. PD-1 and PD-1 ligands: from discovery to clinical application. Int. Immunol. 19, 813–824 (2007).

    CAS  Google Scholar 

  2. 2.

    Pagès, F. et al. International validation of the consensus immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391, 2128–2139 (2018).

    Google Scholar 

  3. 3.

    June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).A definition of the cancer–immunity cycle.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer–immune set point. Nature 541, 321–330 (2017).

    ADS  CAS  PubMed  Google Scholar 

  6. 6.

    Mellman, I., Coukos, G. & Dranoff, G. Cancer immunotherapy comes of age. Nature 480, 480–489 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Medzhitov, R. & Janeway, C. A. Jr. Innate immune induction of the adaptive immune response. Cold Spring Harb. Symp. Quant. Biol. 64, 429–435 (1999).

    CAS  Google Scholar 

  8. 8.

    Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Pradeu, T., Jaeger, S. & Vivier, E. The speed of change: towards a discontinuity theory of immunity? Nat. Rev. Immunol. 13, 764–769 (2013).

    CAS  Google Scholar 

  10. 10.

    Broz, M. L. et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26, 638–652 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008).A demonstration of the role of cDC1 in cancer.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Poulin, L. F. et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8α+ dendritic cells. J. Exp. Med. 207, 1261–1271 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Crozat, K. et al. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8α+ dendritic cells. J. Exp. Med. 207, 1283–1292 (2010).

    CAS  Google Scholar 

  14. 14.

    Sancho, D. et al. Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J. Clin. Invest. 118, 2098–2110 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Fuertes, M. B. et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+ dendritic cells. J. Exp. Med. 208, 2005–2016 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Spranger, S., Dai, D., Horton, B. & Gajewski, T. F. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31, 711–723 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Barry, K. C. et al. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat. Med. 24, 1178–1191 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    ADS  CAS  Google Scholar 

  19. 19.

    Raulet, D. H. & Guerra, N. Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat. Rev. Immunol. 9, 568–580 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Vivier, E. et al. Innate or adaptive immunity? The example of natural killer cells. Science 331, 44–49 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Bottcher, J. P. et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Buck, M. D., Sowell, R. T., Kaech, S. M. & Pearce, E. L. Metabolic instruction of immunity. Cell 169, 570–586 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Marabelle, A., Tselikas, L., de Baere, T. & Houot, R. Intratumoral immunotherapy: using the tumor as the remedy. Ann. Oncol. 28 (suppl. 12), xii33–xii43 (2017).

    CAS  Google Scholar 

  24. 24.

    Houot, R. & Levy, R. T-cell modulation combined with intratumoral CpG cures lymphoma in a mouse model without the need for chemotherapy. Blood 113, 3546–3552 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Marabelle, A. et al. Depleting tumor-specific Tregs at a single site eradicates disseminated tumors. J. Clin. Invest. 123, 2447–2463 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Sagiv-Barfi, I. et al. Eradication of spontaneous malignancy by local immunotherapy. Sci. Transl. Med. 10, eaan4488 (2018).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Ribas, A. et al. SD-101 in combination with pembrolizumab in advanced melanoma: results of a phase Ib, multicenter study. Cancer Discov. 8, 1250–1257 (2018).A clinical trial showing the efficacy of intratumoral TLR9 agonist injections in patients with cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Milhem, M. et al. Phase 1b/2, open label, multicenter, study of the combination of SD-101 and pembrolizumab in patients with advanced melanoma who are naïve to anti-PD-1 therapy. J. Clin. Oncol. 37, 9534 (2019).

    Google Scholar 

  29. 29.

    Demaria, O. et al. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc. Natl Acad. Sci. USA 112, 15408–15413 (2015).

    ADS  CAS  Google Scholar 

  30. 30.

    Corrales, L. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 11, 1018–1030 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Sivick, K. E. et al. Magnitude of therapeutic STING activation determines CD8+ T cell-mediated anti-tumor immunity. Cell Rep. 25, 3074–3085 (2018).

    CAS  Google Scholar 

  32. 32.

    Harrington, K. et al. Preliminary results of the first-in-human (FIH) study of MK-1454, an agonist of stimulator of interferon genes (STING), as monotherapy or in combination with pembrolizumab (pembro) in patients with advanced solid tumors or lymphomas. Ann. Oncol. 29, mdy424.015 (2018).

    Google Scholar 

  33. 33.

    Middleton, M. et al. Phase I/II, multicenter, open-label study of intratumoral/intralesional administration of the retinoic acid–inducible gene I (RIG-I) activator MK-4621 in patients with advanced or recurrent tumors. Ann. Oncol. 29, mdy424.016 (2018).

    Google Scholar 

  34. 34.

    McPherson, A. et al. Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nat. Genet. 48, 758–767 (2016).

    CAS  Google Scholar 

  35. 35.

    Jimenez-Sanchez, A. et al. Heterogeneous tumor-immune microenvironments among differentially growing metastases in an ovarian cancer patient. Cell 170, 927–938 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).

    CAS  PubMed  Google Scholar 

  37. 37.

    Rios-Doria, J. et al. Doxil synergizes with cancer immunotherapies to enhance antitumor responses in syngeneic mouse models. Neoplasia 17, 661–670 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Abruzzese, M. P. et al. Inhibition of bromodomain and extra-terminal (BET) proteins increases NKG2D ligand MICA expression and sensitivity to NK cell-mediated cytotoxicity in multiple myeloma cells: role of cMYC-IRF4-miR-125b interplay. J. Hematol. Oncol. 9, 134 (2016).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Cao, G. et al. Tumor therapeutics work as stress inducers to enhance tumor sensitivity to natural killer (NK) cell cytolysis by up-regulating NKp30 ligand B7-H6. J. Biol. Chem. 290, 29964–29973 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Ruscetti, M. et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science 362, 1416–1422 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Garg, A. D. et al. Trial watch: immunogenic cell death induction by anticancer chemotherapeutics. OncoImmunology 6, e1386829 (2017).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Schmid, P. et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 379, 2108–2121 (2018).

    CAS  Google Scholar 

  43. 43.

    Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 (2007).

    CAS  Google Scholar 

  44. 44.

    Obeid, M. et al. Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death Differ. 14, 1848–1850 (2007).

    CAS  Google Scholar 

  45. 45.

    Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Fiorica, F. et al. Immune checkpoint inhibitor nivolumab and radiotherapy in pretreated lung cancer patients: efficacy and safety of combination. Am. J. Clin. Oncol. 41, 1101–1105 (2018).

    CAS  Google Scholar 

  47. 47.

    Luke, J. J. et al. Safety and clinical activity of pembrolizumab and multisite stereotactic body radiotherapy in patients with advanced solid tumors. J. Clin. Oncol. 36, 1611–1618 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Vanpouille-Box, C. et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 8, 15618 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Salmon, H. et al. Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44, 924–938 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Hammerich, L. et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat. Med. 25, 814–824 (2019).

    CAS  Google Scholar 

  51. 51.

    Dranoff, G. et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl Acad. Sci. USA 90, 3539–3543 (1993).

    ADS  CAS  Google Scholar 

  52. 52.

    Mach, N. et al. Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3-ligand. Cancer Res. 60, 3239–3246 (2000).

    CAS  Google Scholar 

  53. 53.

    Nasi, M. L. et al. Intradermal injection of granulocyte-macrophage colony-stimulating factor (GM-CSF) in patients with metastatic melanoma recruits dendritic cells. Cytokines Cell. Mol. Ther. 5, 139–144 (1999).

    CAS  Google Scholar 

  54. 54.

    Andtbacka, R. H. et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33, 2780–2788 (2015).

    CAS  Google Scholar 

  55. 55.

    Chesney, J. et al. Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J. Clin. Oncol. 36, 1658–1667 (2018).

    CAS  Google Scholar 

  56. 56.

    Ribas, A. et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 174, 1031–1032 (2018).

    CAS  Google Scholar 

  57. 57.

    Zitvogel, L., Galluzzi, L., Kepp, O., Smyth, M. J. & Kroemer, G. Type I interferons in anticancer immunity. Nat. Rev. Immunol. 15, 405–414 (2015).

    CAS  Google Scholar 

  58. 58.

    Diamond, M. S. et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med. 208, 1989–2003 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Dunn, G. P. et al. A critical function for type I interferons in cancer immunoediting. Nat. Immunol. 6, 722–729 (2005).A study describing the role of type I IFNs in cancer.

    CAS  Google Scholar 

  60. 60.

    Le Mercier, I. et al. Tumor promotion by intratumoral plasmacytoid dendritic cells is reversed by TLR7 ligand treatment. Cancer Res. 73, 4629–4640 (2013).

    Google Scholar 

  61. 61.

    Wang, S. et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc. Natl Acad. Sci. USA 113, E7240–E7249 (2016).

    CAS  Google Scholar 

  62. 62.

    Wennerberg, E., Kremer, V., Childs, R. & Lundqvist, A. CXCL10-induced migration of adoptively transferred human natural killer cells toward solid tumors causes regression of tumor growth in vivo. Cancer Immunol. Immunother. 64, 225–235 (2015).

    CAS  Google Scholar 

  63. 63.

    Swann, J. B. et al. Type I IFN contributes to NK cell homeostasis, activation, and antitumor function. J. Immunol. 178, 7540–7549 (2007).

    CAS  Google Scholar 

  64. 64.

    Huang, T. H., Chintalacharuvu, K. R. & Morrison, S. L. Targeting IFN-α to B cell lymphoma by a tumor-specific antibody elicits potent antitumor activities. J. Immunol. 179, 6881–6888 (2007).

    CAS  Google Scholar 

  65. 65.

    Rossi, E. A. et al. Preclinical studies on targeted delivery of multiple IFNα2b to HLA-DR in diverse hematologic cancers. Blood 118, 1877–1884 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Yang, X. et al. Targeting the tumor microenvironment with interferon-β bridges innate and adaptive immune responses. Cancer Cell 25, 37–48 (2014).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Cauwels, A. et al. Delivering type I interferon to dendritic cells empowers tumor eradication and immune combination treatments. Cancer Res. 78, 463–474 (2018).

    CAS  PubMed  Google Scholar 

  68. 68.

    Monticelli, L. A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12, 1045–1054 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Van Gool, F. et al. Interleukin-5-producing group 2 innate lymphoid cells control eosinophilia induced by interleukin-2 therapy. Blood 124, 3572–3576 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Berntsen, A., Brimnes, M. K., thor Straten, P. & Svane, I. M. Increase of circulating CD4+CD25highFoxp3+ regulatory T cells in patients with metastatic renal cell carcinoma during treatment with dendritic cell vaccination and low-dose interleukin-2. J. Immunother. 33, 425–434 (2010).

    CAS  Google Scholar 

  71. 71.

    Sim, G. C. et al. IL-2 therapy promotes suppressive ICOS+ Treg expansion in melanoma patients. J. Clin. Invest. 124, 99–110 (2014).

    CAS  Google Scholar 

  72. 72.

    Hurwitz, M. et al. Baseline tumor-immune signatures associated with response to bempegaldesleukin (NKTR-214) and nivolumab. J. Clin. Oncol. 37, 2623 (2019).

    Google Scholar 

  73. 73.

    Tannir, N. et al. A phase III randomized open label study comparing bempegaldesleukin (NKTR-214) plus nivolumab to sunitinib or cabozantinib (investigator’s choice) in patients with previously untreated advanced renal cell carcinoma. J. Clin. Oncol. 37, TPS4595 (2019).

  74. 74.

    Khushalani, N. et al. CA045–001: A phase III, randomized, open label study of bempegaldesleukin (NKTR-214) plus nivolumab (NIVO) versus NIVO monotherapy in patients (pts) with previously untreated, unresectable or metastatic melanoma (MEL). J. Clin. Oncol. 37, TPS9601 (2019).

  75. 75.

    Huntington, N. D. et al. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J. Exp. Med. 206, 25–34 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Uchida, J. et al. The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J. Exp. Med. 199, 1659–1669 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Gerdes, C. A. et al. GA201 (RG7160): a novel, humanized, glycoengineered anti-EGFR antibody with enhanced ADCC and superior in vivo efficacy compared with cetuximab. Clin. Cancer Res. 19, 1126–1138 (2013).

    CAS  Google Scholar 

  78. 78.

    Paz-Ares, L. G. et al. Phase I pharmacokinetic and pharmacodynamic dose-escalation study of RG7160 (GA201), the first glycoengineered monoclonal antibody against the epidermal growth factor receptor, in patients with advanced solid tumors. J. Clin. Oncol. 29, 3783–3790 (2011).

    CAS  Google Scholar 

  79. 79.

    Herter, S. et al. Preclinical activity of the type II CD20 antibody GA101 (obinutuzumab) compared with rituximab and ofatumumab in vitro and in xenograft models. Mol. Cancer Ther. 12, 2031–2042 (2013).

    CAS  Google Scholar 

  80. 80.

    Stockert, E. et al. A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. J. Exp. Med. 187, 1349–1354 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Reuschenbach, M., von Knebel Doeberitz, M. & Wentzensen, N. A systematic review of humoral immune responses against tumor antigens. Cancer Immunol. Immunother. 58, 1535–1544 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Murphy, M. A., O’Leary, J. J. & Cahill, D. J. Assessment of the humoral immune response to cancer. J. Proteomics 75, 4573–4579 (2012).

    CAS  Google Scholar 

  83. 83.

    Daëron, M., Malbec, O., Latour, S., Arock, M. & Fridman, W. H. Regulation of high-affinity IgE receptor-mediated mast cell activation by murine low-affinity IgG receptors. J. Clin. Invest. 95, 577–585 (1995).

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Schreiber, H., Wu, T. H., Nachman, J. & Rowley, D. A. Immunological enhancement of primary tumor development and its prevention. Semin. Cancer Biol. 10, 351–357 (2000).

    CAS  Google Scholar 

  85. 85.

    Clynes, R. A., Towers, T. L., Presta, L. G. & Ravetch, J. V. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat. Med. 6, 443–446 (2000).A description of the role of FcRγ in antitumour responses.

    CAS  Google Scholar 

  86. 86.

    Roghanian, A. et al. Antagonistic human FcγRIIB (CD32B) antibodies have anti-tumor activity and overcome resistance to antibody therapy in vivo. Cancer Cell 27, 473–488 (2015).

    CAS  Google Scholar 

  87. 87.

    Andre, P. et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 175, 1731–1743 (2018).The definition of monalizumab as a broad-spectrum immune checkpoint inhibitor.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    van Montfoort, N. et al. NKG2A blockade potentiates CD8 T cell immunity induced by cancer vaccines. Cell 175, 1744–1755 (2018).A description of the role of NKG2A blockade in cancer vaccination.

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Zhang, Q. et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat. Immunol. 19, 723–732 (2018).

    ADS  CAS  Google Scholar 

  90. 90.

    Joller, N. et al. Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J. Immunol. 186, 1338–1342 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Johnston, R. J. et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8+ T cell effector function. Cancer Cell 26, 923–937 (2014).

    CAS  PubMed  Google Scholar 

  92. 92.

    Zhou, X. M. et al. Intrinsic expression of immune checkpoint molecule TIGIT could help tumor growth in vivo by suppressing the function of NK and CD8+ T cells. Front. Immunol. 9, 2821 (2018).

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Chauvin, J. M. et al. TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients. J. Clin. Invest. 125, 2046–2058 (2015).

    PubMed  PubMed Central  Google Scholar 

  94. 94.

    Das, M., Zhu, C. & Kuchroo, V. K. Tim-3 and its role in regulating anti-tumor immunity. Immunol. Rev. 276, 97–111 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Chiba, S. et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat. Immunol. 13, 832–842 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    de Mingo Pulido, A. et al. TIM-3 regulates CD103+ dendritic cell function and response to chemotherapy in breast cancer. Cancer Cell 33, 60–74 (2018).

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Andrews, L. P., Marciscano, A. E., Drake, C. G. & Vignali, D. A. LAG3 (CD223) as a cancer immunotherapy target. Immunol. Rev. 276, 80–96 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Baixeras, E. et al. Characterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class II antigens. J. Exp. Med. 176, 327–337 (1992).

    CAS  Google Scholar 

  99. 99.

    Kouo, T. et al. Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol. Res. 3, 412–423 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Xu, F. et al. LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Res. 74, 3418–3428 (2014).

    CAS  Google Scholar 

  101. 101.

    Wang, J. et al. Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3. Cell 176, 334–347 (2019).

    CAS  Google Scholar 

  102. 102.

    Veillette, A. & Chen, J. SIRPα–CD47 immune checkpoint blockade in anticancer therapy. Trends Immunol. 39, 173–184 (2018).

    CAS  Google Scholar 

  103. 103.

    Chao, M. P. et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142, 699–713 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Sikic, B. I. et al. First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J. Clin. Oncol. 37, 946–953 (2019).

    CAS  Google Scholar 

  105. 105.

    Advani, R. et al. CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma. N. Engl. J. Med. 379, 1711–1721 (2018).A study of the clinical efficacy of phagocytosis manipulation.

    CAS  Google Scholar 

  106. 106.

    Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Ruffell, B. & Coussens, L. M. Macrophages and therapeutic resistance in cancer. Cancer Cell 27, 462–472 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Gabrilovich, D. I. Myeloid-derived suppressor cells. Cancer Immunol. Res. 5, 3–8 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Mittal, D. et al. Antimetastatic effects of blocking PD-1 and the adenosine A2A receptor. Cancer Res. 74, 3652–3658 (2014).

    CAS  Google Scholar 

  110. 110.

    Ohta, A. et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc. Natl Acad. Sci. USA 103, 13132–13137 (2006).

    ADS  CAS  Google Scholar 

  111. 111.

    Cekic, C., Day, Y. J., Sag, D. & Linden, J. Myeloid expression of adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment. Cancer Res. 74, 7250–7259 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Wang, L. et al. CD73 has distinct roles in nonhematopoietic and hematopoietic cells to promote tumor growth in mice. J. Clin. Invest. 121, 2371–2382 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Perrot, I. et al. Blocking antibodies targeting the CD39/CD73 immunosuppressive pathway unleash immune responses in combination cancer therapies. Cell Rep. 27, 2411–2425 (2019).

    CAS  Google Scholar 

  114. 114.

    Mascanfroni, I. D. et al. IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39. Nat. Immunol. 14, 1054–1063 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Sun, X. et al. CD39/ENTPD1 expression by CD4+Foxp3+ regulatory T cells promotes hepatic metastatic tumor growth in mice. Gastroenterology 139, 1030–1040 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Siu, L. et al. Preliminary phase 1 profile of BMS-986179, an anti-CD73 antibody, in combination with nivolumab in patients with advanced solid tumors. Proc. AACR Annual Meeting 2018 Abstr. CT180 (2018).

  117. 117.

    Overman, M. et al. Safety, efficacy and pharmacodynamics (PD) of MEDI9447 (oleclumab) alone or in combination with durvalumab in advanced colorectal cancer (CRC) or pancreatic cancer (panc). J. Clin. Oncol. 36, 4123 (2018).

    Google Scholar 

  118. 118.

    Thomas, D. A. & Massagué, J. TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8, 369–380 (2005).

    CAS  Google Scholar 

  119. 119.

    Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).A demonstration of the role of TGFβ in the exclusion of immune cells at the tumour bed.

    ADS  CAS  Google Scholar 

  121. 121.

    Ghiringhelli, F. et al. Tumor cells convert immature myeloid dendritic cells into TGF-β-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J. Exp. Med. 202, 919–929 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Viel, S. et al. TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci. Signal. 9, ra19 (2016).

    Google Scholar 

  123. 123.

    Gao, Y. et al. Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat. Immunol. 18, 1004–1015 (2017).

    CAS  Google Scholar 

  124. 124.

    Novitskiy, S. V. et al. Deletion of TGF-β signaling in myeloid cells enhances their anti-tumorigenic properties. J. Leukoc. Biol. 92, 641–651 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Harizi, H., Juzan, M., Pitard, V., Moreau, J. F. & Gualde, N. Cyclooxygenase-2-issued prostaglandin E2 enhances the production of endogenous IL-10, which down-regulates dendritic cell functions. J. Immunol. 168, 2255–2263 (2002).

    CAS  Google Scholar 

  126. 126.

    Göbel, C. et al. Functional expression cloning identifies COX-2 as a suppressor of antigen-specific cancer immunity. Cell Death Dis. 5, e1568 (2014).

    PubMed  PubMed Central  Google Scholar 

  127. 127.

    Martinet, L., Jean, C., Dietrich, G., Fournié, J. J. & Poupot, R. PGE2 inhibits natural killer and γδ T cell cytotoxicity triggered by NKR and TCR through a cAMP-mediated PKA type I-dependent signaling. Biochem. Pharmacol. 80, 838–845 (2010).

    CAS  Google Scholar 

  128. 128.

    Zelenay, S. et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162, 1257–1270 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Markiewski, M. M. et al. Modulation of the antitumor immune response by complement. Nat. Immunol. 9, 1225–1235 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Vadrevu, S. K. et al. Complement c5a receptor facilitates cancer metastasis by altering T-cell responses in the metastatic niche. Cancer Res. 74, 3454–3465 (2014).

    CAS  Google Scholar 

  131. 131.

    Medler, T. R. et al. Complement C5a fosters squamous carcinogenesis and limits T cell response to chemotherapy. Cancer Cell 34, 561–578 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Ajona, D. et al. A combined PD-1/C5a blockade synergistically protects against lung cancer growth and metastasis. Cancer Discov. 7, 694–703 (2017).

    CAS  Google Scholar 

  133. 133.

    Holmgaard, R. B. et al. Timing of CSF-1/CSF-1R signaling blockade is critical to improving responses to CTLA-4 based immunotherapy. OncoImmunology 5, e1151595 (2016).

    PubMed  PubMed Central  Google Scholar 

  134. 134.

    Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Ries, C. H. et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25, 846–859 (2014).

    CAS  Google Scholar 

  136. 136.

    Peranzoni, E. et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc. Natl Acad. Sci. USA 115, E4041–E4050 (2018).

    CAS  Google Scholar 

  137. 137.

    Zhu, Y. et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 74, 5057–5069 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Salvagno, C. et al. Therapeutic targeting of macrophages enhances chemotherapy efficacy by unleashing type I interferon response. Nat. Cell Biol. 21, 511–521 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Cassier, P. A. et al. CSF1R inhibition with emactuzumab in locally advanced diffuse-type tenosynovial giant cell tumours of the soft tissue: a dose-escalation and dose-expansion phase 1 study. Lancet Oncol. 16, 949–956 (2015).

    CAS  Google Scholar 

  140. 140.

    Papadopoulos, K. P. et al. First-in-human study of AMG 820, a monoclonal anti-colony-stimulating factor 1 receptor antibody, in patients with advanced solid tumors. Clin. Cancer Res. 23, 5703–5710 (2017).

    CAS  Google Scholar 

  141. 141.

    Autio, K. et al. Phase 1 study of LY3022855, a colony-stimulating factor-1 receptor (CSF-1R) inhibitor, in patients with metastatic breast cancer (MBC) or metastatic castration-resistant prostate cancer (MCRPC). J. Clin. Oncol. 37, 2548 (2019).

    Google Scholar 

  142. 142.

    Gyori, D. et al. Compensation between CSF1R+ macrophages and Foxp3+ Treg cells drives resistance to tumor immunotherapy. JCI Insight 3, 120631 (2018).

    Google Scholar 

  143. 143.

    Beffinger, M. et al. CSF1R-dependent myeloid cells are required for NK-mediated control of metastasis. JCI Insight 3, 97792 (2018).

    Google Scholar 

  144. 144.

    Mantovani, A., Dinarello, C. A., Molgora, M. & Garlanda, C. Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity 50, 778–795 (2019).

    CAS  Google Scholar 

  145. 145.

    Mantovani, A., Barajon, I. & Garlanda, C. IL-1 and IL-1 regulatory pathways in cancer progression and therapy. Immunol. Rev. 281, 57–61 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Guo, B., Fu, S., Zhang, J., Liu, B. & Li, Z. Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Sci. Rep. 6, 36107 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Kuan, E. L. & Ziegler, S. F. A tumor-myeloid cell axis, mediated via the cytokines IL-1α and TSLP, promotes the progression of breast cancer. Nat. Immunol. 19, 366–374 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Ridker, P. M. et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017).

    CAS  Google Scholar 

  149. 149.

    Hong, D. S. et al. MABp1, a first-in-class true human antibody targeting interleukin-1α in refractory cancers: an open-label, phase 1 dose-escalation and expansion study. Lancet Oncol. 15, 656–666 (2014).

    CAS  Google Scholar 

  150. 150.

    Hickish, T. et al. MABp1 as a novel antibody treatment for advanced colorectal cancer: a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 18, 192–201 (2017).

    CAS  Google Scholar 

  151. 151.

    Pencheva, N. et al. Convergent multi-miRNA targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis. Cell 151, 1068–1082 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152.

    Pencheva, N., Buss, C. G., Posada, J., Merghoub, T. & Tavazoie, S. F. Broad-spectrum therapeutic suppression of metastatic melanoma through nuclear hormone receptor activation. Cell 156, 986–1001 (2014).

    CAS  Google Scholar 

  153. 153.

    Tavazoie, M. F. et al. LXR/ApoE activation restricts innate immune suppression in cancer. Cell 172, 825–840 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. 154.

    Hollingsworth, R. E. & Jansen, K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines 4, 7 (2019).

    PubMed  PubMed Central  Google Scholar 

  155. 155.

    Brown, C. E. & Mackall, C. L. CAR T cell therapy: inroads to response and resistance. Nat. Rev. Immunol. 19, 73–74 (2019).

    CAS  Google Scholar 

  156. 156.

    Titov, A. et al. The biological basis and clinical symptoms of CAR-T therapy-associated toxicites. Cell Death Dis. 9, 897 (2018).

    PubMed  PubMed Central  Google Scholar 

  157. 157.

    D’Aloia, M. M., Zizzari, I. G., Sacchetti, B., Pierelli, L. & Alimandi, M. CAR-T cells: the long and winding road to solid tumors. Cell Death Dis. 9, 282 (2018).

    PubMed  PubMed Central  Google Scholar 

  158. 158.

    Daher, M. & Rezvani, K. Next generation natural killer cells for cancer immunotherapy: the promise of genetic engineering. Curr. Opin. Immunol. 51, 146–153 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Li, Y., Hermanson, D. L., Moriarity, B. S. & Kaufman, D. S. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell 23, 181–192 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Schmohl, J. U. et al. Tetraspecific scFv construct provides NK cell mediated ADCC and self-sustaining stimuli via insertion of IL-15 as a cross-linker. Oncotarget 7, 73830–73844 (2016).

    PubMed  PubMed Central  Google Scholar 

  161. 161.

    Gauthier, L. et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell 177, 1701–1713 (2019).The generation of NKp46 NK cell engagers.

    CAS  Google Scholar 

  162. 162.

    Oberg, H. H. et al. Tribody [(HER2)2×CD16] is more effective than trastuzumab in enhancing γδ T cell and natural killer cell cytotoxicity against HER2-expressing cancer cells. Front. Immunol. 9, 814 (2018).

    PubMed  PubMed Central  Google Scholar 

  163. 163.

    Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164.

    Rodrigues, E. & Macauley, M. S. Hypersialylation in cancer: modulation of inflammation and therapeutic opportunities. Cancers (Basel) 10, E207 (2018).

    Google Scholar 

  165. 165.

    Wang, J. et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat. Med. 25, 656–666 (2019).The identification of myeloid checkpoints.

    CAS  Google Scholar 

  166. 166.

    Beatson, R. et al. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat. Immunol. 17, 1273–1281 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. 167.

    Jandus, C. et al. Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. J. Clin. Invest. 124, 1810–1820 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. 168.

    Stanczak, M. A. et al. Self-associated molecular patterns mediate cancer immune evasion by engaging Siglecs on T cells. J. Clin. Invest. 128, 4912–4923 (2018).

    PubMed  PubMed Central  Google Scholar 

  169. 169.

    Crinier, A. et al. High-dimensional single-cell analysis identifies organ-specific signatures and conserved NK cell subsets in humans and mice. Immunity 49, 971–986 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. 170.

    Godfrey, D. I., Le Nours, J., Andrews, D. M., Uldrich, A. P. & Rossjohn, J. Unconventional T cell targets for cancer immunotherapy. Immunity 48, 453–473 (2018).

    CAS  Google Scholar 

  171. 171.

    Saad, E. D., Paoletti, X., Burzykowski, T. & Buyse, M. Precision medicine needs randomized clinical trials. Nat. Rev. Clin. Oncol. 14, 317–323 (2017).

    Google Scholar 

  172. 172.

    Marcus, A. et al. Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response. Immunity 49, 754–763 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173.

    Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  174. 174.

    Ishikawa, H., Ma, Z. & Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788–792 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  175. 175.

    Woo, S. R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014).A study of the role of STING in antitumor immunity.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. 176.

    Ho, S. S. et al. The DNA structure-specific endonuclease MUS81 mediates DNA sensor STING-dependent host rejection of prostate cancer cells. Immunity 44, 1177–1189 (2016).

    CAS  Google Scholar 

  177. 177.

    Ahn, J., Xia, T., Rabasa Capote, A., Betancourt, D. & Barber, G. N. Extrinsic phagocyte-dependent STING signaling dictates the immunogenicity of dying cells. Cancer Cell 33, 862–873 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. 178.

    Burdette, D. L. et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515–518 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  179. 179.

    Gao, P. et al. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153, 1094–1107 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. 180.

    Ablasser, A. et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498, 380–384 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  181. 181.

    Zhang, X. et al. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell 51, 226–235 (2013).

    CAS  Google Scholar 

  182. 182.

    Ablasser, A. et al. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503, 530–534 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  183. 183.

    Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  184. 184.

    Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  185. 185.

    Dou, Z. et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550, 402–406 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  186. 186.

    Aguilera, A. & Gómez-González, B. Genome instability: a mechanistic view of its causes and consequences. Nat. Rev. Genet. 9, 204–217 (2008).

    CAS  Google Scholar 

  187. 187.

    Wu, J. & Chen, Z. J. Innate immune sensing and signaling of cytosolic nucleic acids. Annu. Rev. Immunol. 32, 461–488 (2014).

    CAS  Google Scholar 

  188. 188.

    Ishizuka, J. J. et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565, 43–48 (2019).

    ADS  CAS  Google Scholar 

  189. 189.

    Chung, H. et al. Human ADAR1 prevents endogenous RNA from triggering translational shutdown. Cell 172, 811–824 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. 190.

    Liu, H. et al. Tumor-derived IFN triggers chronic pathway agonism and sensitivity to ADAR loss. Nat. Med. 25, 95–102 (2019).

    CAS  Google Scholar 

  191. 191.

    Dahan, R. et al. Therapeutic activity of agonistic, human anti-CD40 monoclonal antibodies requires selective FcγR engagement. Cancer Cell 29, 820–831 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. 192.

    Yu, X. et al. Complex interplay between epitope specificity and isotype dictates the biological activity of anti-human CD40 antibodies. Cancer Cell 33, 664–675 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. 193.

    O’Hara, M. et al. CT004—A phase Ib study of CD40 agonistic monoclonal antibody APX005M together with gemcitabine (Gem) and nab-paclitaxel (NP) with or without nivolumab (Nivo) in untreated metastatic ductal pancreatic adenocarcinoma (PDAC) patients. AACR 2019 Abstr. 8060 (2019).

  194. 194.

    Holmgaard, R. B. et al. Tumor-expressed IDO recruits and activates MDSCs in a Treg-dependent manner. Cell Rep. 13, 412–424 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. 195.

    Munn, D. H. & Mellor, A. L. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J. Clin. Invest. 117, 1147–1154 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. 196.

    Della Chiesa, M. et al. The tryptophan catabolite l-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function. Blood 108, 4118–4125 (2006).

    Google Scholar 

  197. 197.

    Terness, P. et al. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J. Exp. Med. 196, 447–457 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. 198.

    Holmgaard, R. B., Zamarin, D., Munn, D. H., Wolchok, J. D. & Allison, J. P. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J. Exp. Med. 210, 1389–1402 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. 199.

    Gibney, G. T. et al. Phase 1/2 study of epacadostat in combination with ipilimumab in patients with unresectable or metastatic melanoma. J. Immunother. Cancer 7, 80 (2019).

    PubMed  PubMed Central  Google Scholar 

  200. 200.

    Mitchell, T. C. et al. Epacadostat plus pembrolizumab in patients with advanced solid tumors: phase I results from a multicenter, open-label phase I/II trial (ECHO-202/KEYNOTE-037). J. Clin. Oncol. 36, 3223–3230 (2018).

    CAS  Google Scholar 

  201. 201.

    Long, G. V. et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 20, 1083–1097 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

The E.V. laboratory at CIML and Assistance-Publique des Hôpitaux de Marseille is supported by funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (TILC, grant agreement no. 694502), the Agence Nationale de la Recherche including the PIONEER Project (ANR-17-RHUS-0007), Equipe labellisée ‘La Ligue’ (Ligue Nationale contre le Cancer), MSDAvenir, Innate Pharma and institutional grants to the CIML (INSERM, CNRS, and Aix-Marseille University) and to Marseille Immunopole.

Author information

Affiliations

Authors

Contributions

O.D., S.C. and E.V. prepared the first draft of the manuscript, which was then modified by all of the authors.

Corresponding author

Correspondence to Eric Vivier.

Ethics declarations

Competing interests

O.D., S.C., Y.M. and E.V. are shareholders and employees of Innate-Pharma.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Peer review information Nature thanks Glenn Dranoff, Nick Haining and Ira Mellman for their contribution to the peer review of this work.

Supplementary information

Supplementary Table 1

Current clinical landscape of drugs targeting innate immunity. A selection of active clinical programs targeting innate immunity in cancer therapy is presented. The table is organized according to four modes of action: A) Capitalizing on antimicrobial immunity for tumor control; B) Induction and amplification of the innate immune response; C) Promotion of the effector responses of innate immunity; D) Relieving immune suppression at the tumor bed. Abbreviations: A, approved; 2019, IND planned in 2019; *see box 3; $programs stopped in phase III but still active in phase I and II trials.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Demaria, O., Cornen, S., Daëron, M. et al. Harnessing innate immunity in cancer therapy. Nature 574, 45–56 (2019). https://doi.org/10.1038/s41586-019-1593-5

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing