Review Article | Published:

Multi-faceted particle pumps drive carbon sequestration in the ocean

Naturevolume 568pages327335 (2019) | Download Citation


The ocean’s ability to sequester carbon away from the atmosphere exerts an important control on global climate. The biological pump drives carbon storage in the deep ocean and is thought to function via gravitational settling of organic particles from surface waters. However, the settling flux alone is often insufficient to balance mesopelagic carbon budgets or to meet the demands of subsurface biota. Here we review additional biological and physical mechanisms that inject suspended and sinking particles to depth. We propose that these ‘particle injection pumps’ probably sequester as much carbon as the gravitational pump, helping to close the carbon budget and motivating further investigation into their environmental control.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Sarmiento, J. L. & Gruber, N. Ocean Biogeochemical Dynamics Ch. 8 (Princeton Univ. Press, Princeton, 2006).

  2. 2.

    Volk, T. & Hoffert, M. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present Vol. 32 (eds Sundquist, E. T. & Broecker, W. S.) 99–110 (American Geophysical Union, Washington, DC, 1985).

  3. 3.

    McKinley, G. A. et al. Timescales for detection of trends in the ocean carbon sink. Nature 530, 469–472 (2016).

  4. 4.

    Buesseler, K. O. et al. Revisiting carbon flux through the ocean’s twilight zone. Science 316, 567–570 (2007).

  5. 5.

    Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).

  6. 6.

    Maier-Reimer, E., Mikolajewicz, U. & Winguth, A. Future ocean uptake of CO2: interaction between ocean circulation and biology. Clim. Dyn. 12, 711–722 (1996).

  7. 7.

    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

  8. 8.

    Martínez-García, A. et al. Iron fertilization of the Subantarctic ocean during the last ice age. Science 343, 1347–1350 (2014).

  9. 9.

    Moore, J. K. et al. Sustained climate warming drives declining marine biological productivity. Science 359, 1139–1143 (2018).

  10. 10.

    Bernardello, R. et al. Response of the ocean natural carbon storage to projected twenty-first-century climate change. J. Clim. 27, 2033–2053 (2015).

  11. 11.

    Boyd, P. W. & Trull, T. W. Understanding the export of biogenic particles in oceanic waters: Is there consensus? Prog. Oceanogr. 72, 276–312 (2007).

  12. 12.

    Buesseler, K. O. & Boyd, P. W. Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnol. Oceanogr. 54, 1210–1232 (2009).

  13. 13.

    Martin, J., Knauer, G., Karl, D. & Broenkow, W. VERTEX: Carbon cycling in the northeast Pacific. Deep Sea Res. Part A 34, 267–285 (1987).

  14. 14.

    DeVries, T., Primeau, F. & Deutsch, C. The sequestration efficiency of the biological pump. Geophys. Res. Lett. 39, (2012).

  15. 15.

    Emerson, S. Annual net community production and the biological carbon flux in the ocean. Glob. Biogeochem. Cycles 28, 14–28 (2014).

  16. 16.

    Schlitzer, R. Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite based estimates. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 1623–1644 (2002).

  17. 17.

    Burd, A. B. et al. Assessing the apparent imbalance between geochemical and biochemical indicators of meso- and bathypelagic biological activity: What the @$#! is wrong with present calculations of carbon budgets? Deep Sea Res. Part II Top. Stud. Oceanogr. 57, 1557–1571 (2010). This paper reviewed the (lack of) progress on constraining mesopelagic carbon budgets, and advocated new approaches to tackle this issue.

  18. 18.

    Giering, S. L. et al. Reconciliation of the carbon budget in the ocean’s twilight zone. Nature 507, 480–483 (2014). This paper presented one of the few balanced mesopelagic carbon budgets by assessing community respiration versus carbon demand.

  19. 19.

    Steinberg, D. K. et al. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol. Oceanogr. 53, 1327–1338 (2008).

  20. 20.

    Reinthaler, T. et al. Prokaryotic respiration and production in the meso- and bathypelagic realm of the eastern and western North Atlantic basin. Limnol. Oceanogr. 51, 1262–1273 (2006).

  21. 21.

    Boyd, P. W., McDonnell, A. & Valdez, J. RESPIRE: An in situ particle interceptor to conduct particle remineralization and microbial dynamics studies in the oceans’ twilight zone. Limnol. Oceanogr. Meth. 13, 494–508 (2015).

  22. 22.

    Hansell, D. A., Carlson, C. A., Repeta, D. J. & Schlitzer, R. Dissolved organic matter in the ocean. Oceanography (Wash. DC) 22, 202–211 (2009).

  23. 23.

    Lévy, M. et al. Physical pathways for carbon transfers between the surface mixed layer and the ocean interior. Glob. Biogeochem. Cycles 27, 1001–1012 (2013).

  24. 24.

    Henson, S. A., Yool, A. & Sanders, R. Variability in efficiency of particulate organic carbon export: A model study. Geophys. Res. Lett. 29, 33–45 (2015).

  25. 25.

    Aumont, O. et al. Variable reactivity of particulate organic matter in a global ocean biogeochemical model. Biogeosciences 14, 2321–2341 (2017).

  26. 26.

    Siegel, D. A. et al. Global assessment of ocean carbon export by combining satellite observations and food-web models. Glob. Biogeochem. Cycles 28, 181–196 (2014).

  27. 27.

    Stukel, M. R., Song, H., Goericke, R. & Miller, A. J. The role of subduction and gravitational sinking in particle export, carbon sequestration, and the remineralization length scale in the California Current Ecosystem. Limnol. Oceanogr. 63, 363–383 (2017).

  28. 28.

    Omand, M. M. et al. Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science 348, 222–225 (2015). This paper quantified the eddy-subduction pump by using an array of gliders in the North Atlantic during the spring bloom.

  29. 29.

    Dall’Olmo, G., Dingle, J., Polimene, L., Brewin, R. J. W. & Claustre, H. Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump. Nat. Geosci. 9, 820–823 (2016). This paper quantified the mixed-layer pump across large regions of the high latitude ocean.

  30. 30.

    Jónasdóttir, S. H., Visser, A. W., Richardson, K. & Heath, M. R. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. Proc. Natl Acad. Sci. USA 112, 12122–12126 (2015). This paper provided the first detailed quantification of the seasonal lipid pump.

  31. 31.

    Weber, T., Cram, J. A., Leung, S. W., DeVries, T. & Deutsch, C. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency. Proc. Natl Acad. Sci. USA 113, 8606–8611 (2016).

  32. 32.

    Marsay, C. M. et al. Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean. Proc. Natl Acad. Sci. USA 112, 1089–1094 (2015).

  33. 33.

    Giering, S. L. C. et al. Particle flux in the oceans: Challenging the steady state assumption. Glob. Biogeochem. Cycles 31, 159–171 (2017).

  34. 34.

    Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 8, 593–599 (2010).

  35. 35.

    Swan, B. K. et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333, 1296–1300 (2011).

  36. 36.

    Bishop, J. K. B., Conte, M. H., Wiebe, P. H., Roman, M. R. & Langdon, C. Particulate matter production and consumption in deep mixed layers: Observations in a warm-core ring. Deep Sea Res. Part A 33, 1813–1841 (1986).

  37. 37.

    Dall’Olmo, G. & Mork, K. A. Carbon export by small particles in the Norwegian Sea. Geophys. Res. Lett. 41, 2921–2927 (2014).

  38. 38.

    Cushman-Roisin, B. Subduction. In Dynamics of the Oceanic Surface Mixed Layer, Proc. ’Aha Huliko’a, Hawaiian Winter Workshop (eds Muller, P. & Henderson, D.) 181–196 (Hawaii Institute of Geophysics, 1987).

  39. 39.

    Marshall, J., Nurser, A. & Williams, R. Inferring the subduction rate and period over the North Atlantic. J. Phys. Oceanogr. 23, 1315–1329 (1993).

  40. 40.

    Liu, L. L. & Huang, R. X. The global subduction/obduction rates: Their interannual and decadal variability. J. Clim. 25, 1096–1115 (2012).

  41. 41.

    Pollard, R. T. & Regier, L. Large variations in potential vorticity at small spatial scales in the upper ocean. Nature 348, 227–229 (1990).

  42. 42.

    Nurser, A. & Zhang, J. Eddy-induced mixed layer shallowing and mixed layer/thermocline exchange. J. Geophys. Res. Oceans 105, 21851–21868 (2000).

  43. 43.

    Niewiadomska, K., Claustre, H., Prieur, L. & D’Ortenzio, F. Submesoscale physical-biogeochemical coupling across the Ligurian Current (northwestern Mediterranean) using a bio-optical glider. Limnol. Oceanogr. 53, 2210–2225 (2008).

  44. 44.

    Estapa, M. L. et al. Decoupling of net community and export production on submesoscales in the Sargasso Sea. Glob. Biogeochem. Cycles 29, 1266–1282 (2015).

  45. 45.

    Lévy, M., Klein, P. & Treguer, A.-M. Impacts of sub-mesoscale physics on phytoplankton production and subduction. J. Mar. Res. 59, 535–565 (2001).

  46. 46.

    Nagai, T., Gruber, N., Frenzel, H., Lachkar, Z., McWilliams, J. C., & Plattner, G.-K. Dominant role of eddies and filaments in the offshore transport of carbon and nutrients in the California Current System. J. Geophys. Res. Oceans 120, 5318–5341 (2015).

  47. 47.

    Karleskind, P., Lévy, M. & Memery, L. Modifications of mode water properties by sub-mesoscales in a bio-physical model of the Northeast Atlantic. Ocean Model. 39, 47–60 (2011).

  48. 48.

    Karleskind, P., Lévy, M. & Memery, L. Subduction of carbon, nitrogen, and oxygen in the northeast Atlantic. J. Geophys. Res. Oceans 116, C02025 (2011).

  49. 49.

    Stukel, M. R. et al. Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction. Proc. Natl Acad. Sci. USA 114, 1252–1257 (2017). This paper compared the magnitude of export fluxes from the biological pump and the eddy-subduction pump.

  50. 50.

    Vinogradov, M. E. Some problems of vertical distribution of meso- and macroplankton in the ocean. Adv. Mar. Biol. 32, 1–92 (1997).

  51. 51.

    Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Ann. Rev. Mar. Sci. 9, 413–444 (2017).

  52. 52.

    Bianchi, D., Stock, C., Galbraith, E. D. & Sarmiento, J. L. Diel vertical migration: ecological controls and impacts on the biological pump in a one-dimensional ocean model. Glob. Biogeochem. Cycles 27, 478–491 (2013).

  53. 53.

    Bianchi, D., Galbraith, E. D., Carozza, D. A., Mislan, K. A. S. & Stock, C. A. Intensification of open-ocean oxygen depletion by vertically migrating animals. Nat. Geosci. 6, 545–548 (2013). This paper used global Acoustic Doppler Current Profiler observations to constrain the Mesopelagic migration pump.

  54. 54.

    Davison, P. C., Checkley, D. M., Jr, Koslow, J. A. & Barlow, J. Carbon export mediated by mesopelagic fishes in the northeast Pacific Ocean. Prog. Oceanogr. 116, 14–30 (2013). This paper used trawl surveys and metabolic modelling to assess the export fluxes mediated by mesopelagic fishes.

  55. 55.

    Childress, J. J., Taylor, S. M., Cailliet, G. M. & Price, M. H. Patterns of growth, energy utilization and reproduction in some meso- and bathypelagic fishes off Southern California. Mar. Biol. 61, 27–40 (1980).

  56. 56.

    Klevjer, T. A. et al. Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers. Sci. Rep. 6, 19873 (2016).

  57. 57.

    Bradford-Grieve, J. M., Nodder, S. D., Jillett, J. B., Currie, K. & Lassey, K. R. Potential contribution that the copepod Neocalanus tonsus makes to downward carbon 〉ux in the Southern Ocean. J. Plankton Res. 23, 963–975 (2001).

  58. 58.

    Kobari, T. et al. Impacts of ontogenetically migrating copepods on downward carbon 〉ux in the western subarctic Pacific Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 55, 1648–1660 (2008).

  59. 59.

    Dam, H. G., Miller, C. A. & Jonasdottir, S. H. The trophic role of mesozooplankton at 47°N, 20°W during the North Atlantic Bloom Experiment. Deep Sea Res. Part II Top. Stud. Oceanogr. 40, 197–212 (1993).

  60. 60.

    Turner, J. T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog. Oceanogr. 130, 205–248 (2015).

  61. 61.

    Bishop, J. K. B. in Productivity of the Ocean: Present and Past (eds Berger W. H., Smetacek, V. S. & Wefer, G.) 117–137 (Wiley Interscience, New York, 1989).

  62. 62.

    McDonnell, A. M. P., Boyd, P. W. & Buesseler, K. O. Effects of sinking velocities and microbial respiration rates on the attenuation of particulate carbon fluxes through the mesopelagic zone. Glob. Biogeochem. Cycles 29, 175–193 (2015).

  63. 63.

    Durkin, C. A., Estapa, M. L. & Buesseler, K. O. Observations of carbon export by small sinking particles in the upper mesopelagic. Mar. Chem. 175, 72–81 (2015).

  64. 64.

    Cavan, E. L., Trimmer, M., Shelley, F. & Sanders, R. Remineralization of particulate organic carbon in an ocean oxygen minimum zone. Nat. Commun. 8, 14847 (2017).

  65. 65.

    Alldredge, A. L. & Silver, M. W. Characteristics, dynamics and significance of marine snow. Prog. Oceanogr. 20, 41–82 (1988).

  66. 66.

    Jackson, G. A. A model of the formation of marine algal flocs by physical coagulation processes. Deep Sea Res. A 37, 1197–1211 (1990).

  67. 67.

    Kiørboe, T. Formation and fate of marine snow: small-scale processes with large-scale implications. Sci. Mar. 65, 57–71 (2001).

  68. 68.

    Iversen, M. H. & Ploug, H. Temperature effects on carbon-specific respiration rate and sinking velocity of diatom aggregates – potential implications for deep ocean export processes. Biogeosciences 10, 4073–4085 (2013).

  69. 69.

    Ohman, M. D., Powell, R., Picheral, M. & Jensen, D. W. Mesozooplankton and particulate matter responses to a deep-water frontal system in the southern California Current System. J. Plankton Res. 34, 815–827 (2012).

  70. 70.

    D’Asaro E. A. et al. Ocean convergence and the dispersion of flotsam. Proc. Natl Acad. Sci. 30, 1162–1167 (2018).

  71. 71.

    Briggs, N. et al. High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom. Deep Sea Res. Part I Oceanogr. Res. Pap. 58, 1031–1039 (2011).

  72. 72.

    Stanley, R. H. R., McGillicuddy, D. J., Jr., Sandwith, Z. O. & Pleskow, H. M. Submesoscale hotspots of productivity and respiration: Insights from high resolution oxygen and fluorescence sections. Deep Sea Res. Part I Oceanogr. Res. Pap. 130, 1–11 (2017).

  73. 73.

    DeVries, T. & Weber, T. The export and fate of organic matter in the ocean: New constraints from combining satellite and oceanographic tracer observations. Glob. Biogeochem. Cycles 31, 535–555 (2017).

  74. 74.

    Cram, J. A., Weber, T., Leung, S. W., McDonnell, A. M. P., Liang, J.-H. & Deutsch, C. The role of particle size, ballast, temperature, and oxygen in the sinking flux to the deep sea. Glob. Biogeochem. Cycles 32, 858–876 (2018).

  75. 75.

    Bianchi, D., Weber, T. S., Kiko, R. & Deusch, C. Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat. Geosci. 11, 263–268 (2018).

  76. 76.

    Callies, J., Ferrari, R., Klymak, J. M. & Gula, J. Seasonality in submesoscale turbulence. Nat. Commun. 6, 6862–6869 (2015).

  77. 77.

    Lévy, M. et al. Large-scale impacts of submesoscale dynamics on phytoplankton: Local and remote effects. Ocean Model. (Oxf.) 4344, 77–93 (2012).

  78. 78.

    Harrison, C. S., Long, M. C., Lovenduski, N. S. & Moore, J. K. Mesoscale effects on carbon export: A global perspective. Glob. Biogeochem. Cycles 32, 680–703 (2018).

  79. 79.

    Aumont, O. et al. Evaluating the potential impacts of the diurnal vertical migration by marine organisms on marine biogeochemistry. Glob. Biogeochem. Cycles 32, 1622–1643 (2018).

  80. 80.

    Picheral, M. et al. The Underwater Vision Profiler 5: An advanced instrument for high spatial resolution studies of particle size spectra and zooplankton. Limnol. Oceanogr. Methods 8, (2010).

  81. 81.

    Johnson, K. Biogeochemical sensors for autonomous, Lagrangian platforms: Current status, future directions. Autonomous and Lagrangian Platforms and Sensors ALPS II (2017).

  82. 82.

    Fu, L.-L. & Ubelmann, C. On the transition from profile altimeter to swath altimeter for observing global ocean surface topography. J. Atmos. Ocean. Technol. 31, 560–568 (2014).

  83. 83.

    Resplandy, L. et al. How does dynamical spatial variability impact 234Th-derived estimates of organic export? Deep Sea Res. Part I Oceanogr. Res. Pap. 68, 24–45 (2012).

  84. 84.

    Castelvecchi, D. Can we open the black box of AI? Nature 538, 20–23 (2016).

  85. 85.

    Sauzède, R. et al. A neural network-based method for merging ocean color and Argo data to extend surface bio-optical properties to depth: Retrieval of the particulate backscattering coefficient. J. Geophys. Res. Oceans 121, 2552–2571 (2016).

  86. 86.

    Landschützer, P. et al. A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink. Biogeosciences 10, 7793–7815 (2013).

  87. 87.

    Landschützer, P., Gruber, N., Bakker, D. C. E. & Schuster, U. Recent variability of the global ocean carbon sink. Glob. Biogeochem. Cycles 28, 927–949 (2014).

  88. 88.

    Werdell, P. J. et al. An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing. Prog. Oceanogr. 160, 186–212 (2018).

  89. 89.

    Boyd, P. W. et al. The evolution and termination of an iron-induced mesoscale bloom in the northeast subarctic Pacific Ocean. Limnol. Oceanogr. 50, 1872–1886 (2005).

  90. 90.

    Ohman, M. D. & Romagnan, J.-B. Nonlinear effects of body size and optical attenuation on Diel Vertical Migration by zooplankton. Limnol. Oceanogr. 61, 765–770 (2016).

  91. 91.

    Powell, J. R. & Ohman, M. D. Use of glider-class acoustic Doppler profilers for estimating zooplankton biomass. J. Plankton Res. 34, 563–568 (2012).

  92. 92.

    Siegel, D. A. & Deuser, W. G. Trajectories of sinking particles in the Sargasso Sea: Modeling of statistical funnels above deep-ocean sediment traps. Deep Sea Res. Part I Oceanogr. Res. Pap. 44, 1519–1541 (1997).

  93. 93.

    Siegel, D. A., Fields, E. & Buesseler, K. O. A bottom-up view of the biological pump: Modeling source funnels above ocean sediment traps. Deep Sea Res. Part I Oceanogr. Res. Pap. 55, 108–127 (2008).

  94. 94.

    Llort, J. et al. Evaluating Southern Ocean carbon eddy-pump from biogeochemical Argo floats. J. Geophys. Res. Oceans (2018).

Download references


P.W.B. was primarily supported by the Australian Research Council through a Laureate (FL160100131), and this research was also supported under the Australian Research Council’s Special Research Initiative for Antarctic Gateway Partnership (project ID SR140300001). H.C. acknowledges the support of the European Research Council (remOcean project, grant agreement 246777) and of the Climate Initiative of the BNP Paribas foundation (SOCLIM project). M.L. was supported by CNES, by the ANR project SOBUMS (ANR-16-CE01-0014) and by the National Aeronautics and Space Administration (NASA) grant NNX16AR50G. D.A.S. acknowledges support from NASA as part of the EXport Processes in the global Ocean from RemoTe Sensing (EXPORTS) field campaign, grant 80NSSC17K0692. T.W. was supported by National Science Foundation grant OCE-1635414.

Reviewer information

Nature thanks Sarah Giering, Stephanie Henson, Gerhard Herndl, Andreas Oschlies and Paul Wassmann for their contribution to the peer review of this work.

Author information

Author notes

  1. These authors contributed equally: Hervé Claustre, Marina Levy, David A. Siegel, Thomas Weber


  1. Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia

    • Philip W. Boyd
  2. Sorbonne Université & CNRS, Laboratoire d’Océanographie de Villefranche-sur-mer (LOV), Villefranche-sur-Mer, France

    • Hervé Claustre
  3. Sorbonne Université, LOCEAN-IPSL, CNRS/IRD/MNHN, Paris, France

    • Marina Levy
  4. Department of Geography and Earth Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA

    • David A. Siegel
  5. Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY, USA

    • Thomas Weber


  1. Search for Philip W. Boyd in:

  2. Search for Hervé Claustre in:

  3. Search for Marina Levy in:

  4. Search for David A. Siegel in:

  5. Search for Thomas Weber in:


P.W.B. devised the concept and structure for this Review. All authors wrote the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Philip W. Boyd.

Supplementary information

  1. Supplementary Information

    This file contains Supplementary Methods, Supplementary Figures 1-3, Supplementary Tables 1-2 and additional references

About this article

Publication history




Issue Date



By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.