Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multi-faceted particle pumps drive carbon sequestration in the ocean


The ocean’s ability to sequester carbon away from the atmosphere exerts an important control on global climate. The biological pump drives carbon storage in the deep ocean and is thought to function via gravitational settling of organic particles from surface waters. However, the settling flux alone is often insufficient to balance mesopelagic carbon budgets or to meet the demands of subsurface biota. Here we review additional biological and physical mechanisms that inject suspended and sinking particles to depth. We propose that these ‘particle injection pumps’ probably sequester as much carbon as the gravitational pump, helping to close the carbon budget and motivating further investigation into their environmental control.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Interplay between particle characteristics, mode of export (BGP or PIP), delivery depth and larger-scale ocean circulation for a range of pumps.
Fig. 2: Carbon export and storage by PIPs compared to the BGP.
Fig. 3: Fate of exported organic matter constrained in models from geochemical remineralization tracers.


  1. 1.

    Sarmiento, J. L. & Gruber, N. Ocean Biogeochemical Dynamics Ch. 8 (Princeton Univ. Press, Princeton, 2006).

    Google Scholar 

  2. 2.

    Volk, T. & Hoffert, M. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present Vol. 32 (eds Sundquist, E. T. & Broecker, W. S.) 99–110 (American Geophysical Union, Washington, DC, 1985).

  3. 3.

    McKinley, G. A. et al. Timescales for detection of trends in the ocean carbon sink. Nature 530, 469–472 (2016).

    ADS  PubMed  Google Scholar 

  4. 4.

    Buesseler, K. O. et al. Revisiting carbon flux through the ocean’s twilight zone. Science 316, 567–570 (2007).

    ADS  CAS  PubMed  Google Scholar 

  5. 5.

    Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Maier-Reimer, E., Mikolajewicz, U. & Winguth, A. Future ocean uptake of CO2: interaction between ocean circulation and biology. Clim. Dyn. 12, 711–722 (1996).

    Google Scholar 

  7. 7.

    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    ADS  Google Scholar 

  8. 8.

    Martínez-García, A. et al. Iron fertilization of the Subantarctic ocean during the last ice age. Science 343, 1347–1350 (2014).

    ADS  PubMed  Google Scholar 

  9. 9.

    Moore, J. K. et al. Sustained climate warming drives declining marine biological productivity. Science 359, 1139–1143 (2018).

    ADS  CAS  PubMed  Google Scholar 

  10. 10.

    Bernardello, R. et al. Response of the ocean natural carbon storage to projected twenty-first-century climate change. J. Clim. 27, 2033–2053 (2015).

    ADS  Google Scholar 

  11. 11.

    Boyd, P. W. & Trull, T. W. Understanding the export of biogenic particles in oceanic waters: Is there consensus? Prog. Oceanogr. 72, 276–312 (2007).

    ADS  Google Scholar 

  12. 12.

    Buesseler, K. O. & Boyd, P. W. Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnol. Oceanogr. 54, 1210–1232 (2009).

    ADS  CAS  Google Scholar 

  13. 13.

    Martin, J., Knauer, G., Karl, D. & Broenkow, W. VERTEX: Carbon cycling in the northeast Pacific. Deep Sea Res. Part A 34, 267–285 (1987).

    ADS  CAS  Google Scholar 

  14. 14.

    DeVries, T., Primeau, F. & Deutsch, C. The sequestration efficiency of the biological pump. Geophys. Res. Lett. 39, (2012).

  15. 15.

    Emerson, S. Annual net community production and the biological carbon flux in the ocean. Glob. Biogeochem. Cycles 28, 14–28 (2014).

    ADS  CAS  Google Scholar 

  16. 16.

    Schlitzer, R. Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite based estimates. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 1623–1644 (2002).

    ADS  CAS  Google Scholar 

  17. 17.

    Burd, A. B. et al. Assessing the apparent imbalance between geochemical and biochemical indicators of meso- and bathypelagic biological activity: What the @$#! is wrong with present calculations of carbon budgets? Deep Sea Res. Part II Top. Stud. Oceanogr. 57, 1557–1571 (2010). This paper reviewed the (lack of) progress on constraining mesopelagic carbon budgets, and advocated new approaches to tackle this issue.

    ADS  CAS  Google Scholar 

  18. 18.

    Giering, S. L. et al. Reconciliation of the carbon budget in the ocean’s twilight zone. Nature 507, 480–483 (2014). This paper presented one of the few balanced mesopelagic carbon budgets by assessing community respiration versus carbon demand.

    ADS  CAS  PubMed  Google Scholar 

  19. 19.

    Steinberg, D. K. et al. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol. Oceanogr. 53, 1327–1338 (2008).

    ADS  Google Scholar 

  20. 20.

    Reinthaler, T. et al. Prokaryotic respiration and production in the meso- and bathypelagic realm of the eastern and western North Atlantic basin. Limnol. Oceanogr. 51, 1262–1273 (2006).

    ADS  CAS  Google Scholar 

  21. 21.

    Boyd, P. W., McDonnell, A. & Valdez, J. RESPIRE: An in situ particle interceptor to conduct particle remineralization and microbial dynamics studies in the oceans’ twilight zone. Limnol. Oceanogr. Meth. 13, 494–508 (2015).

    CAS  Google Scholar 

  22. 22.

    Hansell, D. A., Carlson, C. A., Repeta, D. J. & Schlitzer, R. Dissolved organic matter in the ocean. Oceanography (Wash. DC) 22, 202–211 (2009).

    Google Scholar 

  23. 23.

    Lévy, M. et al. Physical pathways for carbon transfers between the surface mixed layer and the ocean interior. Glob. Biogeochem. Cycles 27, 1001–1012 (2013).

    ADS  Google Scholar 

  24. 24.

    Henson, S. A., Yool, A. & Sanders, R. Variability in efficiency of particulate organic carbon export: A model study. Geophys. Res. Lett. 29, 33–45 (2015).

    CAS  Google Scholar 

  25. 25.

    Aumont, O. et al. Variable reactivity of particulate organic matter in a global ocean biogeochemical model. Biogeosciences 14, 2321–2341 (2017).

    ADS  CAS  Google Scholar 

  26. 26.

    Siegel, D. A. et al. Global assessment of ocean carbon export by combining satellite observations and food-web models. Glob. Biogeochem. Cycles 28, 181–196 (2014).

    ADS  CAS  Google Scholar 

  27. 27.

    Stukel, M. R., Song, H., Goericke, R. & Miller, A. J. The role of subduction and gravitational sinking in particle export, carbon sequestration, and the remineralization length scale in the California Current Ecosystem. Limnol. Oceanogr. 63, 363–383 (2017).

    ADS  Google Scholar 

  28. 28.

    Omand, M. M. et al. Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science 348, 222–225 (2015). This paper quantified the eddy-subduction pump by using an array of gliders in the North Atlantic during the spring bloom.

    ADS  CAS  PubMed  Google Scholar 

  29. 29.

    Dall’Olmo, G., Dingle, J., Polimene, L., Brewin, R. J. W. & Claustre, H. Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump. Nat. Geosci. 9, 820–823 (2016). This paper quantified the mixed-layer pump across large regions of the high latitude ocean.

    ADS  PubMed  Google Scholar 

  30. 30.

    Jónasdóttir, S. H., Visser, A. W., Richardson, K. & Heath, M. R. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. Proc. Natl Acad. Sci. USA 112, 12122–12126 (2015). This paper provided the first detailed quantification of the seasonal lipid pump.

    ADS  PubMed  Google Scholar 

  31. 31.

    Weber, T., Cram, J. A., Leung, S. W., DeVries, T. & Deutsch, C. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency. Proc. Natl Acad. Sci. USA 113, 8606–8611 (2016).

    ADS  CAS  PubMed  Google Scholar 

  32. 32.

    Marsay, C. M. et al. Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean. Proc. Natl Acad. Sci. USA 112, 1089–1094 (2015).

    ADS  CAS  PubMed  Google Scholar 

  33. 33.

    Giering, S. L. C. et al. Particle flux in the oceans: Challenging the steady state assumption. Glob. Biogeochem. Cycles 31, 159–171 (2017).

    CAS  Google Scholar 

  34. 34.

    Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 8, 593–599 (2010).

    CAS  PubMed  Google Scholar 

  35. 35.

    Swan, B. K. et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333, 1296–1300 (2011).

    ADS  CAS  PubMed  Google Scholar 

  36. 36.

    Bishop, J. K. B., Conte, M. H., Wiebe, P. H., Roman, M. R. & Langdon, C. Particulate matter production and consumption in deep mixed layers: Observations in a warm-core ring. Deep Sea Res. Part A 33, 1813–1841 (1986).

    ADS  CAS  Google Scholar 

  37. 37.

    Dall’Olmo, G. & Mork, K. A. Carbon export by small particles in the Norwegian Sea. Geophys. Res. Lett. 41, 2921–2927 (2014).

    ADS  Google Scholar 

  38. 38.

    Cushman-Roisin, B. Subduction. In Dynamics of the Oceanic Surface Mixed Layer, Proc. ’Aha Huliko’a, Hawaiian Winter Workshop (eds Muller, P. & Henderson, D.) 181–196 (Hawaii Institute of Geophysics, 1987).

  39. 39.

    Marshall, J., Nurser, A. & Williams, R. Inferring the subduction rate and period over the North Atlantic. J. Phys. Oceanogr. 23, 1315–1329 (1993).

    ADS  Google Scholar 

  40. 40.

    Liu, L. L. & Huang, R. X. The global subduction/obduction rates: Their interannual and decadal variability. J. Clim. 25, 1096–1115 (2012).

    ADS  Google Scholar 

  41. 41.

    Pollard, R. T. & Regier, L. Large variations in potential vorticity at small spatial scales in the upper ocean. Nature 348, 227–229 (1990).

    ADS  Google Scholar 

  42. 42.

    Nurser, A. & Zhang, J. Eddy-induced mixed layer shallowing and mixed layer/thermocline exchange. J. Geophys. Res. Oceans 105, 21851–21868 (2000).

    ADS  Google Scholar 

  43. 43.

    Niewiadomska, K., Claustre, H., Prieur, L. & D’Ortenzio, F. Submesoscale physical-biogeochemical coupling across the Ligurian Current (northwestern Mediterranean) using a bio-optical glider. Limnol. Oceanogr. 53, 2210–2225 (2008).

    ADS  CAS  Google Scholar 

  44. 44.

    Estapa, M. L. et al. Decoupling of net community and export production on submesoscales in the Sargasso Sea. Glob. Biogeochem. Cycles 29, 1266–1282 (2015).

    ADS  CAS  Google Scholar 

  45. 45.

    Lévy, M., Klein, P. & Treguer, A.-M. Impacts of sub-mesoscale physics on phytoplankton production and subduction. J. Mar. Res. 59, 535–565 (2001).

    Google Scholar 

  46. 46.

    Nagai, T., Gruber, N., Frenzel, H., Lachkar, Z., McWilliams, J. C., & Plattner, G.-K. Dominant role of eddies and filaments in the offshore transport of carbon and nutrients in the California Current System. J. Geophys. Res. Oceans 120, 5318–5341 (2015).

    ADS  Google Scholar 

  47. 47.

    Karleskind, P., Lévy, M. & Memery, L. Modifications of mode water properties by sub-mesoscales in a bio-physical model of the Northeast Atlantic. Ocean Model. 39, 47–60 (2011).

    ADS  Google Scholar 

  48. 48.

    Karleskind, P., Lévy, M. & Memery, L. Subduction of carbon, nitrogen, and oxygen in the northeast Atlantic. J. Geophys. Res. Oceans 116, C02025 (2011).

    ADS  Google Scholar 

  49. 49.

    Stukel, M. R. et al. Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction. Proc. Natl Acad. Sci. USA 114, 1252–1257 (2017). This paper compared the magnitude of export fluxes from the biological pump and the eddy-subduction pump.

    ADS  CAS  PubMed  Google Scholar 

  50. 50.

    Vinogradov, M. E. Some problems of vertical distribution of meso- and macroplankton in the ocean. Adv. Mar. Biol. 32, 1–92 (1997).

    Google Scholar 

  51. 51.

    Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Ann. Rev. Mar. Sci. 9, 413–444 (2017).

    PubMed  Google Scholar 

  52. 52.

    Bianchi, D., Stock, C., Galbraith, E. D. & Sarmiento, J. L. Diel vertical migration: ecological controls and impacts on the biological pump in a one-dimensional ocean model. Glob. Biogeochem. Cycles 27, 478–491 (2013).

    ADS  CAS  Google Scholar 

  53. 53.

    Bianchi, D., Galbraith, E. D., Carozza, D. A., Mislan, K. A. S. & Stock, C. A. Intensification of open-ocean oxygen depletion by vertically migrating animals. Nat. Geosci. 6, 545–548 (2013). This paper used global Acoustic Doppler Current Profiler observations to constrain the Mesopelagic migration pump.

    ADS  CAS  Google Scholar 

  54. 54.

    Davison, P. C., Checkley, D. M., Jr, Koslow, J. A. & Barlow, J. Carbon export mediated by mesopelagic fishes in the northeast Pacific Ocean. Prog. Oceanogr. 116, 14–30 (2013). This paper used trawl surveys and metabolic modelling to assess the export fluxes mediated by mesopelagic fishes.

    ADS  Google Scholar 

  55. 55.

    Childress, J. J., Taylor, S. M., Cailliet, G. M. & Price, M. H. Patterns of growth, energy utilization and reproduction in some meso- and bathypelagic fishes off Southern California. Mar. Biol. 61, 27–40 (1980).

    Google Scholar 

  56. 56.

    Klevjer, T. A. et al. Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers. Sci. Rep. 6, 19873 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Bradford-Grieve, J. M., Nodder, S. D., Jillett, J. B., Currie, K. & Lassey, K. R. Potential contribution that the copepod Neocalanus tonsus makes to downward carbon 〉ux in the Southern Ocean. J. Plankton Res. 23, 963–975 (2001).

    Google Scholar 

  58. 58.

    Kobari, T. et al. Impacts of ontogenetically migrating copepods on downward carbon 〉ux in the western subarctic Pacific Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 55, 1648–1660 (2008).

    ADS  Google Scholar 

  59. 59.

    Dam, H. G., Miller, C. A. & Jonasdottir, S. H. The trophic role of mesozooplankton at 47°N, 20°W during the North Atlantic Bloom Experiment. Deep Sea Res. Part II Top. Stud. Oceanogr. 40, 197–212 (1993).

    ADS  Google Scholar 

  60. 60.

    Turner, J. T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog. Oceanogr. 130, 205–248 (2015).

    ADS  Google Scholar 

  61. 61.

    Bishop, J. K. B. in Productivity of the Ocean: Present and Past (eds Berger W. H., Smetacek, V. S. & Wefer, G.) 117–137 (Wiley Interscience, New York, 1989).

  62. 62.

    McDonnell, A. M. P., Boyd, P. W. & Buesseler, K. O. Effects of sinking velocities and microbial respiration rates on the attenuation of particulate carbon fluxes through the mesopelagic zone. Glob. Biogeochem. Cycles 29, 175–193 (2015).

    ADS  CAS  Google Scholar 

  63. 63.

    Durkin, C. A., Estapa, M. L. & Buesseler, K. O. Observations of carbon export by small sinking particles in the upper mesopelagic. Mar. Chem. 175, 72–81 (2015).

    CAS  Google Scholar 

  64. 64.

    Cavan, E. L., Trimmer, M., Shelley, F. & Sanders, R. Remineralization of particulate organic carbon in an ocean oxygen minimum zone. Nat. Commun. 8, 14847 (2017).

    ADS  CAS  PubMed  Google Scholar 

  65. 65.

    Alldredge, A. L. & Silver, M. W. Characteristics, dynamics and significance of marine snow. Prog. Oceanogr. 20, 41–82 (1988).

    ADS  Google Scholar 

  66. 66.

    Jackson, G. A. A model of the formation of marine algal flocs by physical coagulation processes. Deep Sea Res. A 37, 1197–1211 (1990).

    ADS  CAS  Google Scholar 

  67. 67.

    Kiørboe, T. Formation and fate of marine snow: small-scale processes with large-scale implications. Sci. Mar. 65, 57–71 (2001).

    Google Scholar 

  68. 68.

    Iversen, M. H. & Ploug, H. Temperature effects on carbon-specific respiration rate and sinking velocity of diatom aggregates – potential implications for deep ocean export processes. Biogeosciences 10, 4073–4085 (2013).

    ADS  Google Scholar 

  69. 69.

    Ohman, M. D., Powell, R., Picheral, M. & Jensen, D. W. Mesozooplankton and particulate matter responses to a deep-water frontal system in the southern California Current System. J. Plankton Res. 34, 815–827 (2012).

    CAS  Google Scholar 

  70. 70.

    D’Asaro E. A. et al. Ocean convergence and the dispersion of flotsam. Proc. Natl Acad. Sci. 30, 1162–1167 (2018).

    ADS  Google Scholar 

  71. 71.

    Briggs, N. et al. High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom. Deep Sea Res. Part I Oceanogr. Res. Pap. 58, 1031–1039 (2011).

    ADS  Google Scholar 

  72. 72.

    Stanley, R. H. R., McGillicuddy, D. J., Jr., Sandwith, Z. O. & Pleskow, H. M. Submesoscale hotspots of productivity and respiration: Insights from high resolution oxygen and fluorescence sections. Deep Sea Res. Part I Oceanogr. Res. Pap. 130, 1–11 (2017).

    ADS  CAS  Google Scholar 

  73. 73.

    DeVries, T. & Weber, T. The export and fate of organic matter in the ocean: New constraints from combining satellite and oceanographic tracer observations. Glob. Biogeochem. Cycles 31, 535–555 (2017).

    ADS  CAS  Google Scholar 

  74. 74.

    Cram, J. A., Weber, T., Leung, S. W., McDonnell, A. M. P., Liang, J.-H. & Deutsch, C. The role of particle size, ballast, temperature, and oxygen in the sinking flux to the deep sea. Glob. Biogeochem. Cycles 32, 858–876 (2018).

    ADS  CAS  Google Scholar 

  75. 75.

    Bianchi, D., Weber, T. S., Kiko, R. & Deusch, C. Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat. Geosci. 11, 263–268 (2018).

    ADS  CAS  Google Scholar 

  76. 76.

    Callies, J., Ferrari, R., Klymak, J. M. & Gula, J. Seasonality in submesoscale turbulence. Nat. Commun. 6, 6862–6869 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Lévy, M. et al. Large-scale impacts of submesoscale dynamics on phytoplankton: Local and remote effects. Ocean Model. (Oxf.) 4344, 77–93 (2012).

    ADS  Google Scholar 

  78. 78.

    Harrison, C. S., Long, M. C., Lovenduski, N. S. & Moore, J. K. Mesoscale effects on carbon export: A global perspective. Glob. Biogeochem. Cycles 32, 680–703 (2018).

    ADS  CAS  Google Scholar 

  79. 79.

    Aumont, O. et al. Evaluating the potential impacts of the diurnal vertical migration by marine organisms on marine biogeochemistry. Glob. Biogeochem. Cycles 32, 1622–1643 (2018).

    ADS  CAS  Google Scholar 

  80. 80.

    Picheral, M. et al. The Underwater Vision Profiler 5: An advanced instrument for high spatial resolution studies of particle size spectra and zooplankton. Limnol. Oceanogr. Methods 8, (2010).

  81. 81.

    Johnson, K. Biogeochemical sensors for autonomous, Lagrangian platforms: Current status, future directions. Autonomous and Lagrangian Platforms and Sensors ALPS II (2017).

  82. 82.

    Fu, L.-L. & Ubelmann, C. On the transition from profile altimeter to swath altimeter for observing global ocean surface topography. J. Atmos. Ocean. Technol. 31, 560–568 (2014).

    ADS  Google Scholar 

  83. 83.

    Resplandy, L. et al. How does dynamical spatial variability impact 234Th-derived estimates of organic export? Deep Sea Res. Part I Oceanogr. Res. Pap. 68, 24–45 (2012).

    ADS  CAS  Google Scholar 

  84. 84.

    Castelvecchi, D. Can we open the black box of AI? Nature 538, 20–23 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Sauzède, R. et al. A neural network-based method for merging ocean color and Argo data to extend surface bio-optical properties to depth: Retrieval of the particulate backscattering coefficient. J. Geophys. Res. Oceans 121, 2552–2571 (2016).

    ADS  Google Scholar 

  86. 86.

    Landschützer, P. et al. A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink. Biogeosciences 10, 7793–7815 (2013).

    ADS  Google Scholar 

  87. 87.

    Landschützer, P., Gruber, N., Bakker, D. C. E. & Schuster, U. Recent variability of the global ocean carbon sink. Glob. Biogeochem. Cycles 28, 927–949 (2014).

    ADS  Google Scholar 

  88. 88.

    Werdell, P. J. et al. An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing. Prog. Oceanogr. 160, 186–212 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Boyd, P. W. et al. The evolution and termination of an iron-induced mesoscale bloom in the northeast subarctic Pacific Ocean. Limnol. Oceanogr. 50, 1872–1886 (2005).

    ADS  CAS  Google Scholar 

  90. 90.

    Ohman, M. D. & Romagnan, J.-B. Nonlinear effects of body size and optical attenuation on Diel Vertical Migration by zooplankton. Limnol. Oceanogr. 61, 765–770 (2016).

    ADS  Google Scholar 

  91. 91.

    Powell, J. R. & Ohman, M. D. Use of glider-class acoustic Doppler profilers for estimating zooplankton biomass. J. Plankton Res. 34, 563–568 (2012).

    Google Scholar 

  92. 92.

    Siegel, D. A. & Deuser, W. G. Trajectories of sinking particles in the Sargasso Sea: Modeling of statistical funnels above deep-ocean sediment traps. Deep Sea Res. Part I Oceanogr. Res. Pap. 44, 1519–1541 (1997).

    ADS  Google Scholar 

  93. 93.

    Siegel, D. A., Fields, E. & Buesseler, K. O. A bottom-up view of the biological pump: Modeling source funnels above ocean sediment traps. Deep Sea Res. Part I Oceanogr. Res. Pap. 55, 108–127 (2008).

    ADS  Google Scholar 

  94. 94.

    Llort, J. et al. Evaluating Southern Ocean carbon eddy-pump from biogeochemical Argo floats. J. Geophys. Res. Oceans (2018).

Download references


P.W.B. was primarily supported by the Australian Research Council through a Laureate (FL160100131), and this research was also supported under the Australian Research Council’s Special Research Initiative for Antarctic Gateway Partnership (project ID SR140300001). H.C. acknowledges the support of the European Research Council (remOcean project, grant agreement 246777) and of the Climate Initiative of the BNP Paribas foundation (SOCLIM project). M.L. was supported by CNES, by the ANR project SOBUMS (ANR-16-CE01-0014) and by the National Aeronautics and Space Administration (NASA) grant NNX16AR50G. D.A.S. acknowledges support from NASA as part of the EXport Processes in the global Ocean from RemoTe Sensing (EXPORTS) field campaign, grant 80NSSC17K0692. T.W. was supported by National Science Foundation grant OCE-1635414.

Reviewer information

Nature thanks Sarah Giering, Stephanie Henson, Gerhard Herndl, Andreas Oschlies and Paul Wassmann for their contribution to the peer review of this work.

Author information




P.W.B. devised the concept and structure for this Review. All authors wrote the manuscript.

Corresponding author

Correspondence to Philip W. Boyd.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Figures 1-3, Supplementary Tables 1-2 and additional references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boyd, P.W., Claustre, H., Levy, M. et al. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568, 327–335 (2019).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing