Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Measurement-based quantum control of mechanical motion

Abstract

Controlling a quantum system by using observations of its dynamics is complicated by the backaction of the measurement process—that is, the unavoidable quantum disturbance caused by coupling the system to a measurement apparatus. An efficient measurement is one that maximizes the amount of information gained per disturbance incurred. Real-time feedback can then be used to cancel the backaction of the measurement and to control the evolution of the quantum state. Such measurement-based quantum control has been demonstrated in the clean settings of cavity and circuit quantum electrodynamics, but its application to motional degrees of freedom has remained elusive. Here we demonstrate measurement-based quantum control of the motion of a millimetre-sized membrane resonator. An optomechanical transducer resolves the zero-point motion of the resonator in a fraction of its millisecond-scale coherence time, with an overall measurement efficiency close to unity. An electronic feedback loop converts this position record to a force that cools the resonator mode to its quantum ground state (residual thermal occupation of about 0.29). This occupation is nine decibels below the quantum-backaction limit of sideband cooling and six orders of magnitude below the equilibrium occupation of the thermal environment. We thus realize a long-standing goal in the field, adding position and momentum to the degrees of freedom that are amenable to measurement-based quantum control, with potential applications in quantum information processing and gravitational-wave detectors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optomechanical system.
Fig. 2: Quantum backaction in sideband cooling.
Fig. 3: Quantum measurement.
Fig. 4: Feedback cooling to the quantum ground state.
Fig. 5: Heating from low phonon occupancy.

Data availability

Source Data for Figs. 15 are provided with the online version of the paper and are available in the UCPH ERDA repository (https://doi.org/10.17894/ucph.2612dd59-20ab-40d2-a33d-f53e4428c4cd).

References

  1. Braginsky, V. B. & Khalili, F. Y. Quantum Measurement (Cambridge Univ. Press, Cambridge, 1992).

    Book  Google Scholar 

  2. Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  3. Jacobs, K. Quantum Measurement Theory and its Application (Cambridge Univ. Press, Cambridge, 2014).

    Book  Google Scholar 

  4. Wiseman, H. M. & Milburn, G. J. Quantum Measurement and Control (Cambridge Univ. Press, Cambridge, 2009).

    Book  Google Scholar 

  5. Zhang, J., Liu, Y.-X., Wu, R.-B., Jacobs, K. & Nori, F. Quantum feedback: theory, experiments, and applications. Phys. Rep. 679, 1–60 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  6. Sayrin, C. et al. Real-time quantum feedback prepares and stabilizes photon number states. Nature 477, 73–77 (2011).

    Article  ADS  CAS  Google Scholar 

  7. Vijay, R. et al. Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback. Nature 490, 77–80 (2012).

    Article  ADS  CAS  Google Scholar 

  8. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  ADS  Google Scholar 

  9. Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    Article  ADS  CAS  Google Scholar 

  10. Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

    Article  ADS  CAS  Google Scholar 

  11. Clark, J. B., Lecocq, F., Simmonds, R. W., Aumentado, J. & Teufel, J. D. Sideband cooling beyond the quantum backaction limit with squeezed light. Nature 541, 191–195 (2017).

    Article  ADS  CAS  Google Scholar 

  12. Mancini, S., Vitali, D. & Tombesi, P. Optomechanical cooling of a macroscopic oscillator by homodyne feedback. Phys. Rev. Lett. 80, 688–691 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Cohadon, P. F., Heidmann, A. & Pinard, M. Cooling of a mirror by radiation pressure. Phys. Rev. Lett. 83, 3174–3177 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Kubanek, A. et al. Photon-by-photon feedback control of a single-atom trajectory. Nature 462, 898–901 (2009).

    Article  ADS  CAS  Google Scholar 

  15. Bushev, P. et al. Feedback cooling of a single trapped ion. Phys. Rev. Lett. 96, 043003 (2006).

    Article  ADS  Google Scholar 

  16. Li, T., Kheifets, S. & Raizen, M. G. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat. Phys. 7, 527–530 (2011).

    Article  CAS  Google Scholar 

  17. Jain, V. et al. Direct measurement of photon recoil from a levitated nanoparticle. Phys. Rev. Lett. 116, 243601 (2016).

    Article  ADS  Google Scholar 

  18. Poggio, M., Degen, C. L., Mamin, H. J. & Rugar, D. Feedback cooling of a cantilever’s fundamental mode below 5 mK. Phys. Rev. Lett. 99, 017201 (2007).

    Article  ADS  CAS  Google Scholar 

  19. Kleckner, D. & Bouwmeester, D. Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75–78 (2006).

    Article  ADS  CAS  Google Scholar 

  20. Wilson, D. J. et al. Measurement-based control of a mechanical oscillator at its thermal decoherence rate. Nature 524, 325–329 (2015).

    Article  ADS  CAS  Google Scholar 

  21. Lee, K. H., McRae, T. G., Harris, G. I., Knittel, J. & Bowen, W. P. Cooling and control of a cavity optoelectromechanical system. Phys. Rev. Lett. 104, 123604 (2010).

    Article  ADS  Google Scholar 

  22. LaHaye, M. D., Buu, O., Camarota, B. & Schwab, K. C. Approaching the quantum limit of a nanomechanical resonator. Science 304, 74–77 (2004).

    Article  ADS  CAS  Google Scholar 

  23. Gavartin, E., Verlot, P. & Kippenberg, T. J. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat. Nanotechnol. 7, 509–514 (2012).

    Article  ADS  CAS  Google Scholar 

  24. Vinante, A. et al. Feedback cooling of the normal modes of a massive electromechanical system to submillikelvin temperature. Phys. Rev. Lett. 101, 033601 (2008).

    Article  ADS  CAS  Google Scholar 

  25. Abbott, B. et al. Observation of a kilogram-scale oscillator near its quantum ground state. New J. Phys. 11, 073032 (2009).

    Article  ADS  Google Scholar 

  26. Tsaturyan, Y., Barg, A., Polzik, E. S. & Schliesser, A. Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution. Nat. Nanotechnol. 12, 776–783 (2017).

    Article  CAS  Google Scholar 

  27. Thompson, J. et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008).

    Article  ADS  CAS  Google Scholar 

  28. Nielsen, W. H. P., Tsaturyan, Y., Møller, C. B., Polzik, E. S. & Schliesser, A. Multimode optomechanical system in the quantum regime. Proc. Natl Acad. Sci. USA 114, 62–66 (2017).

    Article  ADS  Google Scholar 

  29. Bowen, W. P. & Milburn, G. J. Quantum Optomechanics 103, 161, 163 (CRC Press, Boca Raton, 2016).

    MATH  Google Scholar 

  30. Weis, S. et al. Optomechanically induced transparency. Science 330, 1520–1523 (2010).

    Article  ADS  CAS  Google Scholar 

  31. Peterson, R. W. et al. Laser cooling of a micromechanical membrane to the quantum backaction limit. Phys. Rev. Lett. 116, 063601 (2016).

    Article  ADS  CAS  Google Scholar 

  32. Gorodetksy, M., Schliesser, A., Anetsberger, G., Deleglise, S. & Kippenberg, T. Determination of the vacuum optomechanical coupling rate using frequency noise calibration. Opt. Express 18, 23236–23246 (2010).

    Article  ADS  Google Scholar 

  33. Purdy, T. P., Grutter, K. E., Srinivasan, K. & Taylor, J. M. Quantum correlations from a room-temperature optomechanical cavity. Science 356, 1265–1268 (2017).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  34. Martynov, D. V. et al. Sensitivity of the advanced LIGO detectors at the beginning of gravitational wave astronomy. Phys. Rev. D 93, 112004 (2016).

    Article  ADS  Google Scholar 

  35. Schreppler, S. et al. Optically measuring force near the standard quantum limit. Science 344, 1486–1489 (2014).

    Article  ADS  CAS  Google Scholar 

  36. Kampel, N. S. et al. Improving broadband displacement detection with quantum correlations. Phys. Rev. X 7, 021008 (2017).

    Google Scholar 

  37. Doherty, A. C. & Jacobs, K. Feedback control of quantum systems using continuous state estimation. Phys. Rev. A 60, 2700–2711 (1999).

    Article  ADS  CAS  Google Scholar 

  38. Doherty, A. C., Habib, S., Jacobs, K., Mabuchi, H. & Tan, S. M. Quantum feedback control and classical control theory. Phys. Rev. A 62, 012105 (2000).

    Article  ADS  Google Scholar 

  39. Garbini, J. L., Bruland, K. J., Dougherty, W. M. & Sidles, J. A. Optimal control of force microscope cantilevers. I. Controller design. J. Appl. Phys. 80, 1951–1958 (1996).

    Article  ADS  CAS  Google Scholar 

  40. Genes, C., Vitali, D., Tombesi, P., Gigan, S. & Aspelmeyer, M. Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2008).

    Article  ADS  Google Scholar 

  41. Doherty, A. C., Szorkovszky, A., Harris, G. I. & Bowen, W. P. The quantum trajectory approach to quantum feedback control of an oscillator revisited. Phil. Trans. R. Soc. Lond. A 370, 5338–5353 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  42. Wieczorek, W. et al. Optimal state estimation for cavity optomechanical systems. Phys. Rev. Lett. 114, 223601 (2015).

    Article  ADS  Google Scholar 

  43. Chu, Y. et al. Quantum acoustics with superconducting qubits. Science 358, 199–202 (2017).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  44. Hofer, S. G., Vasilyev, D. V., Aspelmeyer, M. & Hammerer, K. Time-continuous Bell measurements. Phys. Rev. Lett. 111, 170404 (2013).

    Article  ADS  Google Scholar 

  45. Hofer, S. G. & Hammerer, K. Entanglement-enhanced time-continuous quantum control in optomechanics. Phys. Rev. A 91, 033822 (2015).

    Article  ADS  Google Scholar 

  46. Szorkovszky, A., Doherty, A. C., Harris, G. I. & Bowen, W. P. Mechanical squeezing via parametric amplification and weak measurement. Phys. Rev. Lett. 107, 213603 (2011).

    Article  ADS  CAS  Google Scholar 

  47. Courty, J.-M., Heidmann, A. & Pinard, M. Quantum locking of mirrors in interferometers. Phys. Rev. Lett. 90, 083601 (2003).

    Article  ADS  Google Scholar 

  48. Ringbauer, M., Weinhold, T. J., Howard, L. A., White, A. G. & Vanner, M. R. Generation of mechanical interference fringes by multi-photon counting. New J. Phys. 20, 053042 (2018).

    Article  ADS  Google Scholar 

  49. Black, E. D. An introduction to Pound-Drever-Hall laser frequency stabilization. Am. J. Phys. 69, 79–87 (2001).

    Article  ADS  Google Scholar 

  50. Leonhardt, U. Measuring the Quantum State of Light Ch. 4.2 (Cambridge Univ. Press, Cambridge, 1997).

    MATH  Google Scholar 

  51. Neuhaus, L. et al. PyRPL (Python Red Pitaya Lockbox) — an open-source software package for FPGA-controlled quantum optics experiments. In 2017 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference https://doi.org/10.1109/CLEOE-EQEC.2017.8087380 (Optical Society of America, 2017).

  52. Jayich, A. M. et al. Dispersive optomechanics: a membrane inside a cavity. New J. Phys. 10, 095008 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with K. Hammerer, E. Zeuthen and D. Vitali, and early-stage sample fabrication by Y. Seis. This work was supported by funding from the European Union’s Horizon 2020 research and innovation programme (European Research Council (ERC) project Q-CEOM, grant agreement no. 638765 and FET proactive project HOT, grant agreement no. 732894), a starting grant from the Danish Council for Independent Research and the Carlsberg Foundation.

Reviewer information

Nature thanks D. Bouwmeester, M. Poggio and M. Vanner for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

M.R., D.M. and J.C. built (with initial contributions from Y.T.) and performed the experiments, analysed the data and, together with A.S., discussed the results and wrote the paper. Y.T. designed and fabricated the membrane resonators. A.S. conceived and directed the project.

Corresponding author

Correspondence to Albert Schliesser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Soft-clamped membrane.

a, Photograph of the soft-clamped membrane. b, Simulated displacement pattern of defect-localized mode A. c, Mechanical spectrum of the lowest-frequency bandgap, with defect-localized modes labelled from A to E. The grey peak at 1.09 MHz is a phase-calibration tone.

Extended Data Fig. 2 Mode A ringdowns.

a, Ringdowns with continuous and stroboscopic optical monitoring. The inset shows the power spectral density (PSD) of the continuous ringdown data. b, Ringdowns at different continuous optical powers. The Q values extracted are 1.02 × 109, 1.06 × 109, 1.07 × 109 and 1.04 × 109 from high to low optical power.

Extended Data Fig. 3 Experimental set-up.

An overview of the optical and electronic scheme used in the experiments is shown. AM, amplitude modulator; PM, phase modulator; DAQ, data acquisition card; LIA, lock-in amplifier; aux, auxiliary; νPDH, Pound–Drever–Hall modulation frequency; νcal, calibration tone frequency.

Extended Data Fig. 4 OMIT.

Measured traces of the transmission |tp| are shown for different laser detunings, close to the mechanical frequency Ωm (dashed red line). Black lines are theoretical fits.

Extended Data Table 1 Contribution to detection efficiency

Supplementary information

Supplementary Information

This file contains a table with a summary of symbols used throughout the manuscript and three additional sections. In the first one we discuss about the theoretical model used to describe the measurements presented in the manuscript. In the second one we give details about the methods used to analyse the data. In the third section we provide additional measurements which characterize the additional technical noise of the laser source used in the experiment.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossi, M., Mason, D., Chen, J. et al. Measurement-based quantum control of mechanical motion. Nature 563, 53–58 (2018). https://doi.org/10.1038/s41586-018-0643-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0643-8

Keywords

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing