Review Article | Published:

A new era in the search for dark matter

Naturevolume 562pages5156 (2018) | Download Citation

Abstract

There is a growing sense of ‘crisis’ in the dark-matter particle community, which arises from the absence of evidence for the most popular candidates for dark-matter particles—such as weakly interacting massive particles, axions and sterile neutrinos—despite the enormous effort that has gone into searching for these particles. Here we discuss what we have learned about the nature of dark matter from past experiments and the implications for planned dark-matter searches in the next decade. We argue that diversifying the experimental effort and incorporating astronomical surveys and gravitational-wave observations is our best hope of making progress on the dark-matter problem.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Bertone, G. & Hooper, D. A history of dark matter. Rev. Mod. Phys. (in the press); preprint at https://arxiv.org/abs/1605.04909. A broad historical perspective on the observational discoveries and the theoretical arguments that led the scientific community to adopt dark matter as an essential part of the standard cosmological model.

  2. 2.

    de Swart, J. G., Bertone, G. & van Dongen, J. How dark matter came to matter. Nat. Astron. 1, 0059 (2017).

  3. 3.

    Ade, P. A. R. et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).

  4. 4.

    Bertone, G. et al. Particle Dark Matter: Observations, Models and Searches (Cambridge Univ. Press, Cambridge, 2010).

  5. 5.

    Hui, L., Ostriker, J. P., Tremaine, S. & Witten, E. Ultralight scalars as cosmological dark matter. Phys. Rev. D 95, 043541 (2017).

  6. 6.

    Bird, S. et al. Did LIGO detect dark matter? Phys. Rev. Lett. 116, 201301 (2016). Shortly after the LIGO detection of gravitational waves, this paper revived the hypothesis that dark matter is made of primordial black holes.

  7. 7.

    Clesse, S. & García-Bellido, J. Detecting the gravitational wave background from primordial black hole dark matter. Phys. Dark Universe 18, 105–114 (2017).

  8. 8.

    Bertone, G., Hooper, D. & Silk, J. Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279–390 (2005).

  9. 9.

    de Gouvêa, A., Hernández, D. & Tait, T. M. P. Criteria for natural hierarchies. Phys. Rev. D 89, 115005 (2014).

  10. 10.

    Dine, M. Naturalness under stress. Annu. Rev. Nucl. Part. Sci. 65, 43–62 (2015).

  11. 11.

    Bertone, G. The moment of truth for WIMP dark matter. Nature 468, 389–393 (2010). This 2010 review anticipated that absence of evidence for WIMPs within 5 to 10 years would inevitably lead to the decline of the WIMP paradigm.

  12. 12.

    Giudice, G. F. The dawn of the post-naturalness era. Preprint at https://arxiv.org/abs/1710.07663 (2017). This article argued that after decades of particle physics research driven by naturalness arguments, we are now witnessing the dawn of the ‘post-naturalness’ era.

  13. 13.

    Athron, P. et al. Global fits of GUT-scale SUSY models with GAMBIT. Eur. Phys. J. C 77, 824 (2017).

  14. 14.

    van Beekveld, M., Beenakker, W., Caron, S., Peeters, R. & Ruiz de Austri, R. Supersymmetry with dark matter is still natural. Phys. Rev. D 96, 035015 (2017).

  15. 15.

    Ross, G. G., Schmidt-Hoberg, K. & Staub, F. Revisiting fine-tuning in the MSSM. J. High Energy Phys. 03, 021 (2017).

  16. 16.

    Goodman, J. et al. Constraints on dark matter from colliders. Phys. Rev. D 82, 116010 (2010). This paper showed that colliders may detect dark matter even in cases where the expected direct and indirect detection signals are highly suppressed.

  17. 17.

    Abdallah, J. et al. Simplified models for dark matter searches at the LHC. Phys. Dark Universe 9–10, 8–23 (2015).

  18. 18.

    Beltran, M., Hooper, D., Kolb, E. W., Krusberg, Z. A. C. & Tait, T. M. P. Maverick dark matter at colliders. J. High Energy Phys. 09, 037 (2010).

  19. 19.

    Essig, R., Mardon, J. & Volansky, T. Direct detection of sub-GeV dark matter. Phys. Rev. D 85, 076007 (2012).

  20. 20.

    Hochberg, Y., Zhao, Y. & Zurek, K. M. Superconducting detectors for superlight dark matter. Phys. Rev. Lett. 116, 011301 (2016).

  21. 21.

    Knapen, S., Lin, T. & Zurek, K. M. Light dark matter in superfluid helium: detection with multi-excitation production. Phys. Rev. D 95, 056019 (2017).

  22. 22.

    Hochberg, Y. et al. Detection of sub-MeV dark matter with three-dimensional Dirac materials. Phys. Rev. D 97, 015004 (2018).

  23. 23.

    Essig, R., Schuster, P. & Toro, N. Probing dark forces and light hidden sectors at low-energy e+e colliders. Phys. Rev. D 80, 015003 (2009).

  24. 24.

    Silverwood, H., Weniger, C., Scott, P. & Bertone, G. A realistic assessment of the CTA sensitivity to dark matter annihilation. J. Cosmol. Astropart. Phys. 1503, 055 (2015).

  25. 25.

    Acharya, B. S. et al. Science with the Cherenkov Telescope Array. Preprint at https://arxiv.org/abs/1709.07997 (2017).

  26. 26.

    Abbott, L. F. & Sikivie, P. A cosmological bound on the invisible axion. Phys. Lett. B 120, 133–136 (1983).

  27. 27.

    Du, N. et al. A search for invisible axion dark matter with the Axion Dark Matter Experiment. Phys. Rev. Lett. 120, 151301 (2018).

  28. 28.

    Kahn, Y., Safdi, B. R. & Thaler, J. Broadband and resonant approaches to axion dark matter detection. Phys. Rev. Lett. 117, 141801 (2016).

  29. 29.

    Graham, P. W., Irastorza, I. G., Lamoreaux, S. K., Lindner, A. & van Bibber, K. A. Experimental searches for the axion and axion-like particles. Annu. Rev. Nucl. Part. Sci. 65, 485–514 (2015). A comprehensive review of present and upcoming experimental searches for axions and axion-like particles.

  30. 30.

    Caldwell, A. et al. Dielectric haloscopes: a new way to detect axion dark matter. Phys. Rev. Lett. 118, 091801 (2017).

  31. 31.

    Shi, X.-D. & Fuller, G. M. A new dark matter candidate: nonthermal sterile neutrinos. Phys. Rev. Lett. 82, 2832–2835 (1999).

  32. 32.

    Laine, M. & Shaposhnikov, M. Sterile neutrino dark matter as a consequence of nuMSM-induced lepton asymmetry. J. Cosmol. Astropart. Phys. 0806, 031 (2008).

  33. 33.

    Boyarsky, A., Ruchayskiy, O. & Shaposhnikov, M. The role of sterile neutrinos in cosmology and astrophysics. Annu. Rev. Nucl. Part. Sci. 59, 191–214 (2009).

  34. 34.

    Drewes, M. et al. A white paper on keV sterile neutrino dark matter. J. Cosmol. Astropart. Phys. 1701, 025 (2017).

  35. 35.

    Bulbul, E. et al. Detection of an unidentified emission line in the stacked X-ray spectrum of galaxy clusters. Astrophys. J. 789, 13 (2014).

  36. 36.

    Jeltema, T. E. & Profumo, S. Discovery of a 3.5 keV line in the Galactic Centre and a critical look at the origin of the line across astronomical targets. Mon. Not. R. Astron. Soc. 450, 2143–2152 (2015).

  37. 37.

    Abazajian, K. N. Sterile neutrinos in cosmology. Phys. Rep. 711–712, 1–28 (2017). A comprehensive review of the astroparticle and cosmological aspects of sterile neutrinos.

  38. 38.

    Kolb, E. W., Chung, D. J. H. & Riotto, A. WIMPzillas! AIP Conf. Proc. 484, 91–105 (1999).

  39. 39.

    Berezhiani, L. & Khoury, J. Theory of dark matter superfluidity. Phys. Rev. D 92, 103510 (2015).

  40. 40.

    Kuhnel, F., Starkman, G. D., Freese, K. & Matas, A. Primordial black-hole and macroscopic dark-matter constraints with LISA. Preprint at https://arxiv.org/abs/1705.10361 (2017).

  41. 41.

    Buckley, M. R. & Peter, A. H. G. Gravitational probes of dark matter physics. Preprint at https://arxiv.org/abs/1712.06615 (2017). A review of the expected impact of future astrophysical measurements on our understanding of dark matter.

  42. 42.

    Riess, A. G. et al. New parallaxes of Galactic Cepheids from spatially scanning the Hubble Space Telescope: implications for the Hubble constant. Astrophys. J. 855 136 (2018).

  43. 43.

    Frenk, C. S. & White, S. D. M. Dark matter and cosmic structure. Ann. Phys. 524, 507–534 (2012).

  44. 44.

    Spergel, D. N. & Steinhardt, P. J. Observational evidence for self-interacting cold dark matter. Phys. Rev. Lett. 84, 3760–3763 (2000).

  45. 45.

    Tulin, S. & Yu, H.-B. Dark matter self-interactions and small scale structure. Phys. Rep. 730, 1–57 (2018).

  46. 46.

    Brinckmann, T., Zavala, J., Rapetti, D., Hansen, S. H. & Vogelsberger, M. The structure and assembly history of cluster-sized haloes in self-interacting dark matter. Mon. Not. R. Astron. Soc. 474, 746–759 (2018).

  47. 47.

    Robertson, A. et al. The diverse density profiles of galaxy clusters with self-interacting dark matter plus baryons. Mon. Not. R. Astron. Soc. 476, L20 (2018).

  48. 48.

    Kaplinghat, M., Keeley, R. E., Linden, T. & Yu, H.-B. Tying dark matter to baryons with selfinteractions. Phys. Rev. Lett. 113, 021302 (2014).

  49. 49.

    Harvey, D., Massey, R., Kitching, T., Taylor, A. & Tittley, E. The non-gravitational interactions of dark matter in colliding galaxy clusters. Science 347, 1462–1465 (2015).

  50. 50.

    Robertson, A., Massey, R. & Eke, V. Cosmic particle colliders: simulations of self-interacting dark matter with anisotropic scattering. Mon. Not. R. Astron. Soc. 467, 4719–4730 (2017).

  51. 51.

    Randall, S. W., Markevitch, M., Clowe, D., Gonzalez, A. H. & Bradac, M. Constraints on the self-interaction cross-section of dark matter from numerical simulations of the merging galaxy cluster 1E 0657–56. Astrophys. J. 679, 1173–1180 (2008).

  52. 52.

    Harvey, D., Courbin, F., Kneib, J. P. & McCarthy, I. G. A detection of wobbling brightest cluster galaxies within massive galaxy clusters. Mon. Not. R. Astron. Soc. 472, 1972–1980 (2017).

  53. 53.

    Narayanan, V. K., Spergel, D. N., Dave, R. & Ma, C.-P. Constraints on the mass of warm dark matter particles and the shape of the linear power spectrum from the Lyα forest. Astrophys. J. 543, L103–L106 (2000).

  54. 54.

    Iršič, V. et al. New Constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-α forest data. Phys. Rev. D 96, 023522 (2017).

  55. 55.

    Iršič, V., Viel, M., Haehnelt, M. G., Bolton, J. S. & Becker, G. D. First constraints on fuzzy dark matter from Lyman-α forest data and hydrodynamical simulations. Phys. Rev. Lett. 119, 031302 (2017).

  56. 56.

    Yoon, J. H., Johnston, K. V. & Hogg, D. W. Clumpy streams from clumpy halos: detecting missing satellites with cold stellar structures. Astrophys. J. 731, 58 (2011).

  57. 57.

    Carlberg, R. G. Dark matter sub-halo counts via star stream crossings. Astrophys. J. 748, 20 (2012).

  58. 58.

    Bovy, J., Erkal, D. & Sanders, J. L. Linear perturbation theory for tidal streams and the small-scale CDM power spectrum. Mon. Not. R. Astron. Soc. 466, 628–668 (2017).

  59. 59.

    Erkal, D. & Belokurov, V. Properties of dark subhaloes from gaps in tidal streams. Mon. Not. R. Astron. Soc. 454, 3542–3558 (2015).

  60. 60.

    Banik, N., Bertone, G., Bovy, J. & Bozorgnia, N. Probing the nature of dark matter particles with stellar streams. J. Cosmol. Astropart. Phys. 7 061 (2018).

  61. 61.

    Mao, S. & Schneider, P. Evidence for substructure in lens galaxies? Mon. Not. R. Astron. Soc. 295, 587 (1998).

  62. 62.

    Metcalf, R. B. & Madau, P. Compound gravitational lensing as a probe of dark matter substructure within galaxy halos. Astrophys. J. 563, 9–20 (2001).

  63. 63.

    Dalal, N. & Kochanek, C. S. Direct detection of cold dark matter substructure. Astrophys. J. 572, 25–33 (2002).

  64. 64.

    Gilman, D., Birrer, S., Treu, T. & Keeton, C. R. Probing the nature of dark matter by forward modelling flux ratios in strong gravitational lenses. Mon. Not. R. Astron. Soc. https://doi.org/10.1093/mnras/sty2261 (2018).

  65. 65.

    Vegetti, S. & Koopmans, L. V. E. Bayesian strong gravitational-lens modelling on adaptive grids: objective detection of mass substructure in galaxies. Mon. Not. R. Astron. Soc. 392, 945 (2009).

  66. 66.

    Despali, G., Vegetti, S., White, S. D. M., Giocoli, C. & van den Bosch, F. C. Modelling the line-of-sight contribution in substructure lensing. Mon. Not. R. Astron. Soc. 475, 5424–5442 (2018).

  67. 67.

    Oguri, M. & Marshall, P. J. Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys. Mon. Not. R. Astron. Soc. 405, 2579–2593 (2010).

  68. 68.

    Daylan, T., Cyr-Racine, F.-Y., Diaz Rivero, A., Dvorkin, C. & Finkbeiner, D. P. Probing the small-scale structure in strongly lensed systems via transdimensional inference. Astrophys. J. 854, 141 (2018).

  69. 69.

    Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

  70. 70.

    Barack, L. et al. Black holes, gravitational waves and fundamental physics: a roadmap. Preprint at https://arxiv.org/abs/1806.05195 (2018). This article contains a discussion about the role of gravitational waves in the search for dark matter.

  71. 71.

    Carr, B., Kuhnel, F. & Sandstad, M. Primordial black holes as dark matter. Phys. Rev. D 94, 083504 (2016).

  72. 72.

    Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial black hole scenario for the gravitational-wave event GW150914. Phys. Rev. Lett. 117, 061101 (2016).

  73. 73.

    Ali-Haïmoud, Y., Kovetz, E. D. & Kamionkowski, M. Merger rate of primordial black-hole binaries. Phys. Rev. D 96, 123523 (2017).

  74. 74.

    Kavanagh, B. J., Gaggero, D. & Bertone, G. Merger rate of a subdominant population of primordial black holes. Phys. Rev. D 98, 023536 (2018).

  75. 75.

    Gaggero, D. et al. Searching for primordial black holes in the radio and X-ray sky. Phys. Rev. Lett. 118, 241101 (2017).

  76. 76.

    Lacki, B. C. & Beacom, J. F. Primordial black holes as dark matter: almost all or almost nothing. Astrophys. J. 720, L67–L71 (2010).

  77. 77.

    Koushiappas, S. M. & Loeb, A. Maximum redshift of gravitational wave merger events. Phys. Rev. Lett. 119, 221104 (2017).

  78. 78.

    Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365–370 (1983).

  79. 79.

    Moffat, J. W. Scalar-tensor-vector gravity theory. J. Cosmol. Astropart. Phys. 0603, 004 (2006).

  80. 80.

    Verlinde, E. P. Emergent gravity and the dark Universe. SciPost Phys. 2, 016 (2017).

  81. 81.

    Abbott, B. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

  82. 82.

    Boran, S., Desai, S., Kahya, E. O. & Woodard, R. P. GW170817 falsifies dark matter emulators. Phys. Rev. D 97, 041501 (2018).

  83. 83.

    Sakstein, J. & Jain, B. Implications of the neutron star merger GW170817 for cosmological scalar-tensor theories. Phys. Rev. Lett. 119, 251303 (2017).

  84. 84.

    Wang, H. et al. The GW170817/GRB 170817A/AT 2017gfo association: some implications for physics and astrophysics. Astrophys. J. 851, L18 (2017).

  85. 85.

    Bekenstein, J. D. Relativistic gravitation theory for the MOND paradigm. Phys. Rev. D 70, 083509 (2004); erratum 71, 069901 (2005).

  86. 86.

    Gondolo, P. & Silk, J. Dark matter annihilation at the galactic center. Phys. Rev. Lett. 83, 1719–1722 (1999).

  87. 87.

    Merritt, D., Milosavljevic, M., Verde, L. & Jimenez, R. Dark matter spikes and annihilation radiation from the galactic center. Phys. Rev. Lett. 88, 191301 (2002).

  88. 88.

    Bertone, G. & Merritt, D. Time-dependent models for dark matter at the Galactic Center. Phys. Rev. D 72, 103502 (2005).

  89. 89.

    Bertone, G., Zentner, A. R. & Silk, J. A new signature of dark matter annihilations: gamma-rays from intermediate-mass black holes. Phys. Rev. D 72, 103517 (2005).

  90. 90.

    Ricotti, M., Ostriker, J. P. & Mack, K. J. Effect of primordial black holes on the cosmic microwave background and cosmological parameter estimates. Astrophys. J. 680, 829–845 (2008).

  91. 91.

    Brito, R. et al. Gravitational wave searches for ultralight bosons with LIGO and LISA. Phys. Rev. D 96, 064050 (2017).

  92. 92.

    Arvanitaki, A., Baryakhtar, M., Dimopoulos, S., Dubovsky, S. & Lasenby, R. Black hole mergers and the QCD axion at advanced LIGO. Phys. Rev. D 95, 043001 (2017).

  93. 93.

    Baumann, D., Chia, H. S. & Porto, R. A. Probing ultralight bosons with binary black holes. Preprint at https://arxiv.org/abs/1804.03208 (2018).

  94. 94.

    Billard, J., Strigari, L. & Figueroa-Feliciano, E. Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments. Phys. Rev. D 89, 023524 (2014).

  95. 95.

    Bertone, G. et al. Identifying WIMP dark matter from particle and astroparticle data. J. Cosmol. Astropart. Phys. 1803, 026 (2018).

  96. 96.

    Caron, S., Kim, J. S., Rolbiecki, K., Ruiz de Austri, R. & Stienen, B. The BSM-AI project: SUSYAI–generalizing LHC limits on supersymmetry with machine learning. Eur. Phys. J. C 77, 257 (2017).

  97. 97.

    Hezaveh, Y. D., Perreault Levasseur, L. & Marshall, P. J. Fast automated analysis of strong gravitational lenses with convolutional neural networks. Nature 548, 555–557 (2017). An interesting example of the application of machine-learning methods to dark matter studies.

  98. 98.

    Larkoski, A. J., Moult, I. & Nachman, B. Jet substructure at the Large Hadron Collider: a review of recent advances in theory and machine learning. Preprint at https://arxiv.org/abs/1709.04464 (2017).

  99. 99.

    George, D. & Huerta, E. A. Deep learning for real-time gravitational wave detection and parameter estimation: results with advanced LIGO data. Phys. Lett. B 778, 64–70 (2018).

Download references

Acknowledgements

We thank V. Cardoso, D. Gaggero, D. Harvey, D. Hooper, B. Kavanagh, S. Vegetti and M. Viel for comments on the initial version of this manuscript. The work of T.M.P.T. is supported in part by NSF grant PHY-1316792.

Reviewer information

Nature thanks M. Kamionkowski and R. Massey for their contribution to the peer review of this work.

Author information

Affiliations

  1. GRAPPA Institute and Institute of Physics, University of Amsterdam, Amsterdam, The Netherlands

    • Gianfranco Bertone
    •  & Tim M. P. Tait
  2. Department of Physics and Astronomy, University of California, Irvine, CA, USA

    • Tim M. P. Tait

Authors

  1. Search for Gianfranco Bertone in:

  2. Search for Tim M. P. Tait in:

Contributions

G.B. conceived the idea of the review. G.B. and T.M.P.T. contributed equally to the writing of the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Gianfranco Bertone or Tim M. P. Tait.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41586-018-0542-z

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.