Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Modified Einstein versus modified Euler for dark matter

Abstract

Modifications of general relativity generically contain additional degrees of freedom that can mediate forces between matter particles. One of the common manifestations of a fifth force in alternative gravity theories is a difference between the gravitational potentials felt by relativistic and non-relativistic particles, also known as ‘the gravitational slip’. In contrast, a fifth force between dark matter particles, owing to dark sector interaction, does not cause a gravitational slip, making the latter a possible ‘smoking gun’ of modified gravity. Here we point out that a force acting on dark matter particles, as in models of coupled quintessence, would also manifest itself as a measurement of an effective gravitational slip by cosmological surveys of large-scale structure. This is linked to the fact that redshift-space distortions owing to peculiar motion of galaxies do not provide a measurement of the true gravitational potential if dark matter is affected by a fifth force. Hence, it is extremely challenging to distinguish a dark sector interaction from a modification of gravity with cosmological data alone. Future observations of gravitational redshift from galaxy surveys can help to break the degeneracy between these possibilities, by providing a direct measurement of the distortion of time. We discuss this and other possible ways to resolve this important question.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The large-scale and the local Ψ.
Fig. 2: RSD and WL constraints on μ and Σ.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Perlmutter, S. et al. Measurements of omega and lambda from 42 high redshift supernovae. Astrophys. J. 517, 565–586 (1999).

    ADS  MATH  Google Scholar 

  2. Riess, A. G. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998).

    ADS  Google Scholar 

  3. Lovelock, D. The Einstein tensor and its generalizations. J. Math. Phys. 12, 498–501 (1971).

    ADS  MathSciNet  MATH  Google Scholar 

  4. Lovelock, D. The four-dimensionality of space and the einstein tensor. J. Math. Phys. 13, 874–876 (1972).

    ADS  MathSciNet  MATH  Google Scholar 

  5. Horndeski, G. W. Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys. 10, 363–384 (1974).

    MathSciNet  Google Scholar 

  6. Deffayet, C., Gao, X., Steer, D. A. & Zahariade, G. From k-essence to generalised Galileons. Phys. Rev. D 84, 064039 (2011).

    ADS  Google Scholar 

  7. Amendola, L., Kunz, M. & Sapone, D. Measuring the dark side (with weak lensing). J. Cosmol. Astropart. Phys. 0804, 013 (2008).

    ADS  Google Scholar 

  8. Daniel, S. F., Caldwell, R. R., Cooray, A. & Melchiorri, A. Large scale structure as a probe of gravitational slip. Phys. Rev. D 77, 103513 (2008).

    ADS  Google Scholar 

  9. Zhang, P., Liguori, M., Bean, R. & Dodelson, S. Probing gravity at cosmological scales by measurements which test the relationship between gravitational lensing and matter overdensity. Phys. Rev. Lett. 99, 141302 (2007).

    ADS  Google Scholar 

  10. Song, Y.-S. et al. Complementarity of weak lensing and peculiar velocity measurements in testing general relativity. Phys. Rev. D 84, 083523 (2011).

    ADS  Google Scholar 

  11. Amendola, L., Kunz, M., Motta, M., Saltas, I. D. & Sawicki, I. Observables and unobservables in dark energy cosmologies. Phys. Rev. D 87, 023501 (2013).

    ADS  Google Scholar 

  12. Amendola, L. et al. Cosmology and fundamental physics with the Euclid satellite. Living Rev. Relativ. 16, 6 (2013).

    ADS  Google Scholar 

  13. Amendola, L. et al. Cosmology and fundamental physics with the Euclid satellite. Living Rev. Relativ. 21, 2 (2018).

    ADS  Google Scholar 

  14. Wetterich, C. The Cosmon model for an asymptotically vanishing time dependent cosmological ’constant’. Astron. Astrophys. 301, 321–328 (1995).

    ADS  Google Scholar 

  15. Zlatev, I., Wang, L.-M. & Steinhardt, P. J. Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 82, 896–899 (1999).

    ADS  Google Scholar 

  16. Amendola, L. Coupled quintessence. Phys. Rev. D 62, 043511 (2000).

    ADS  Google Scholar 

  17. Barros, B. J., Amendola, L., Barreiro, T. & Nunes, N. J. Coupled quintessence with a ΛCDM background: removing the σ8 tension. J. Cosmol. Astropart. Phys. 01, 007 (2019).

    ADS  Google Scholar 

  18. Song, Y.-S., Hollenstein, L., Caldera-Cabral, G. & Koyama, K. Theoretical priors on modified growth parametrisations. J. Cosmol. Astropart. Phys. 04, 018 (2010).

    ADS  Google Scholar 

  19. Motta, M., Sawicki, I., Saltas, I. D., Amendola, L. & Kunz, M. Probing dark energy through scale dependence. Phys. Rev. D 88, 124035 (2013).

    ADS  Google Scholar 

  20. Zucca, A., Pogosian, L., Silvestri, A. & Zhao, G.-B. MGCAMB with massive neutrinos and dynamical dark energy. J. Cosmol. Astropart. Phys. 05, 001 (2019).

    ADS  MathSciNet  MATH  Google Scholar 

  21. Castello, S., Grimm, N. & Bonvin, C. Rescuing constraints on modified gravity using gravitational redshift in large-scale structure. Phys. Rev. D 106, 083511 (2023).

    ADS  MathSciNet  Google Scholar 

  22. Kunz, M. & Sapone, D. Dark energy versus modified gravity. Phys. Rev. Lett. 98, 121301 (2007).

    ADS  Google Scholar 

  23. Battye, R. A. & Pearson, J. A. Effective action approach to cosmological perturbations in dark energy and modified gravity. J. Cosmol. Astropart. Phys. 07, 019 (2012).

    ADS  Google Scholar 

  24. Kaiser, N. Clustering in real space and in redshift space. Mon. Not. R. Astron. Soc. 227, 1–27 (1987).

    ADS  Google Scholar 

  25. Bonvin, C. & Durrer, R. What galaxy surveys really measure. Phys. Rev. D 84, 063505 (2011).

    ADS  Google Scholar 

  26. Yoo, J., Fitzpatrick, A. L. & Zaldarriaga, M. A new perspective on galaxy clustering as a cosmological probe: general relativistic effects. Phys. Rev. D 80, 083514 (2009).

    ADS  Google Scholar 

  27. Challinor, A. & Lewis, A. The linear power spectrum of observed source number counts. Phys. Rev. D 84, 043516 (2011).

    ADS  Google Scholar 

  28. Bonvin, C., Hui, L. & Gaztanaga, E. Asymmetric galaxy correlation functions. Phys. Rev. D 89, 083535 (2014).

    ADS  Google Scholar 

  29. McDonald, P. Gravitational redshift and other redshift-space distortions of the imaginary part of the power spectrum. J. Cosmol. Astropart. Phys. 11, 026 (2009).

    ADS  Google Scholar 

  30. Croft, R. A. C. Gravitational redshifts from large-scale structure. Mon. Not. R. Astron. Soc. 434, 3008–3017 (2013).

    ADS  Google Scholar 

  31. Yoo, J., Hamaus, N., Seljak, U. & Zaldarriaga, M. Going beyond the Kaiser redshift-space distortion formula: a full general relativistic account of the effects and their detectability in galaxy clustering. Phys. Rev. D 86, 063514 (2012).

    ADS  Google Scholar 

  32. Gaztanaga, E., Bonvin, C. & Hui, L. Measurement of the dipole in the cross-correlation function of galaxies. J. Cosmol. Astropart. Phys. 01, 032 (2017).

    ADS  Google Scholar 

  33. Beutler, F. & Di Dio, E. Modeling relativistic contributions to the halo power spectrum dipole. J. Cosmol. Astropart. Phys. 07, 048 (2020).

    ADS  MathSciNet  MATH  Google Scholar 

  34. Bonvin, C. & Fleury, P. Testing the equivalence principle on cosmological scales. J. Cosmol. Astropart. Phys. 05, 061 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  35. Sobral-Blanco, D. & Bonvin, C. Measuring anisotropic stress with relativistic effects. Phys. Rev. D 104, 063516 (2021).

    ADS  Google Scholar 

  36. Sobral-Blanco, D. & Bonvin, C. Measuring the distortion of time with relativistic effects in large-scale structure. Mont. Not. R. Astron. Soc. Letters 519, 39 (2023).

    ADS  Google Scholar 

  37. Prat, J. et al. Dark energy survey year 3 results: high-precision measurement and modeling of galaxy–galaxy lensing. Phys. Rev. D 105, 083528 (2022).

    ADS  Google Scholar 

  38. Tutusaus, I., Sobral-Blanco, D. & Bonvin, C. Combining gravitational lensing and gravitational redshift to measure the anisotropic stress with future galaxy surveys. Phys. Rev. D 107, 083526 (2023).

    ADS  Google Scholar 

  39. Ivezić, v et al. LSST: from science drivers to reference design and anticipated data products. Astrophys. J. 873, 111 (2019).

    ADS  Google Scholar 

  40. Planck Collaboration Planck 2015 results. XIV. Dark energy and modified gravity. Astron. Astrophys. 594, A14 (2016).

  41. Wang, J., Hui, L. & Khoury, J. No-go theorems for generalized chameleon field theories. Phys. Rev. Lett. 109, 241301 (2012).

    ADS  Google Scholar 

  42. Baldi, M. Clarifying the effects of interacting dark energy on linear and nonlinear structure formation processes. Mon. Not. R. Astron. Soc. 414, 116 (2011).

    ADS  Google Scholar 

  43. Khoury, J. & Weltman, A. Chameleon fields: awaiting surprises for tests of gravity in space. Phys. Rev. Lett. 93, 171104 (2004).

    ADS  Google Scholar 

  44. Hinterbichler, K. & Khoury, J. Symmetron fields: screening long-range forces through local symmetry restoration. Phys. Rev. Lett. 104, 231301 (2010).

    ADS  Google Scholar 

  45. Deffayet, C., Esposito-Farese, G. & Vikman, A. Covariant Galileon. Phys. Rev. D 79, 084003 (2009).

    ADS  Google Scholar 

  46. Deffayet, C., Pujolas, O., Sawicki, I. & Vikman, A. Imperfect dark energy from kinetic gravity braiding. J. Cosmol. Astropart. Phys. 1010, 026 (2010).

    ADS  Google Scholar 

  47. Linder, E. V. No slip gravity. J. Cosmol. Astropart. Phys. 03, 005 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  48. Jelic-Cizmek, G., Lepori, F., Bonvin, C. & Durrer, R. On the importance of lensing for galaxy clustering in photometric and spectroscopic surveys. J. Cosmol. Astropart. Phys. 04, 055 (2021).

    ADS  MathSciNet  Google Scholar 

  49. Alam, S. et al. Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory. Phys. Rev. D 103, 083533 (2021).

    ADS  Google Scholar 

  50. Blake, C. et al. Galaxy And Mass Assembly (GAMA): improved cosmic growth measurements using multiple tracers of large-scale structure. Mon. Not. R. Astron. Soc. 436, 3089 (2013).

    ADS  Google Scholar 

  51. Zhao, G.-B. et al. The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: a multitracer analysis in Fourier space for measuring the cosmic structure growth and expansion rate. Mon. Not. R. Astron. Soc. 504, 33–52 (2021).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Castello, H. Mirpoorian, A. Silvestri and Z. Wang for useful discussions, and R. Durrer, K. Koyama and M. Kunz for their valuable feedback on the draft of this paper. C.B. acknowledges financial support from the Swiss National Science Foundation and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 863929; project title ‘Testing the law of gravity with novel large-scale structure observables’). L.P. is supported by the National Sciences and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the project and writing the paper.

Corresponding author

Correspondence to Camille Bonvin.

Ethics declarations

Competing interests

The authors declare competing interests.

Peer review

Peer review information

Nature Astronomy thanks Dragan Huterer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonvin, C., Pogosian, L. Modified Einstein versus modified Euler for dark matter. Nat Astron 7, 1127–1134 (2023). https://doi.org/10.1038/s41550-023-02003-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02003-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing