Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet


Owing to the unusual geometry of kagome lattices—lattices made of corner-sharing triangles—their electrons are useful for studying the physics of frustrated, correlated and topological quantum electronic states1,2,3,4,5,6,7,8,9. In the presence of strong spin–orbit coupling, the magnetic and electronic structures of kagome lattices are further entangled, which can lead to hitherto unknown spin–orbit phenomena. Here we use a combination of vector-magnetic-field capability and scanning tunnelling microscopy to elucidate the spin–orbit nature of the kagome ferromagnet Fe3Sn2 and explore the associated exotic correlated phenomena. We discover that a many-body electronic state from the kagome lattice couples strongly to the vector field with three-dimensional anisotropy, exhibiting a magnetization-driven giant nematic (two-fold-symmetric) energy shift. Probing the fermionic quasi-particle interference reveals consistent spontaneous nematicity—a clear indication of electron correlation—and vector magnetization is capable of altering this state, thus controlling the many-body electronic symmetry. These spin-driven giant electronic responses go well beyond Zeeman physics and point to the realization of an underlying correlated magnetic topological phase. The tunability of this kagome magnet reveals a strong interplay between an externally applied field, electronic excitations and nematicity, providing new ways of controlling spin–orbit properties and exploring emergent phenomena in topological or quantum materials10,11,12.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Surface identification at the atomic scale.
Fig. 2: Vector-magnetization-induced giant and nematic energy shift.
Fig. 3: Vector-magnetization-governed electronic symmetry.
Fig. 4: Correspondence between vector-magnetization-based energy shift and broken symmetry.

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.


  1. 1.

    Mekata, M. Kagome: the story of the basketweave lattice. Phys. Today 56, 12 (2003).

    Article  Google Scholar 

  2. 2.

    Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Ohgushi, K., Murakami, S. & Nagaosa, N. Spin anisotropy and quantum Hall effect in the kagomé lattice: chiral spin state based on a ferromagnet. Phys. Rev. B 62, R6065 (2000).

    ADS  CAS  Article  Google Scholar 

  4. 4.

    Yan, S., Huse, D. A. & White, S. R. Spin-liquid ground state of the S=1/2 kagome Heisenberg antiferromagnet. Science 332, 1173–1176 (2011).

    ADS  CAS  Article  Google Scholar 

  5. 5.

    Han, T.-H. et al. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature 492, 406–410 (2012).

    ADS  CAS  Article  Google Scholar 

  6. 6.

    Mazin, I. I. et al. Theoretical prediction of a strongly correlated Dirac metal. Nat. Commun. 5, 4261 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    Chisnell, R. et al. Topological magnon bands in a kagome lattice ferromagnet. Phys. Rev. Lett. 115, 147201 (2015).

    ADS  CAS  Article  Google Scholar 

  8. 8.

    Xu, G., Lian, B. & Zhang, S.-C. Intrinsic quantum anomalous Hall effect in the kagome lattice Cs2LiMn3F12. Phys. Rev. Lett. 115, 186802 (2015).

    ADS  Article  Google Scholar 

  9. 9.

    Zhu, W., Gong, S.-S., Zeng, T.-S., Fu, L. & Sheng, D. S. Interaction-driven spontaneous quantum Hall effect on a kagome lattice. Phys. Rev. Lett. 117, 096402 (2016).

    ADS  CAS  Article  Google Scholar 

  10. 10.

    Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Keimer, B. & Moore, J. E. The physics of quantum materials. Nat. Phys. 13, 1045–1055 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    Tokura, Y., Kawasaki, M. & Nagaosa, N. Emergent functions of quantum materials. Nat. Phys. 13, 1056–1068 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Kida, T. et al. The giant anomalous Hall effect in the ferromagnet Fe3Sn2 – a frustrated kagome metal. J. Phys. Condens. Matter 23, 112205 (2011).

    ADS  CAS  Article  Google Scholar 

  14. 14.

    Wang, Q., Sun, S., Zhang, X., Pang, F. & Lei, H. Anomalous Hall effect in a ferromagnetic Fe3Sn2 single crystal with a geometrically frustrated Fe bilayer kagome lattice. Phys. Rev. B 94, 075135 (2016).

    ADS  Article  Google Scholar 

  15. 15.

    Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    ADS  CAS  Article  Google Scholar 

  16. 16.

    Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).

    ADS  CAS  Article  Google Scholar 

  18. 18.

    Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018).

    ADS  CAS  Article  Google Scholar 

  19. 19.

    Fenner, L. A., Dee, A. A. & Wills, A. S. Non-collinearity and spin frustration in the itinerant kagome ferromagnet Fe3Sn2. J. Phys. Condens. Matter 21, 452202 (2009).

    ADS  CAS  Article  Google Scholar 

  20. 20.

    Hou, Z. et al. Observation of various and spontaneous magnetic skyrmionic bubbles at room temperature in a frustrated kagome magnet with uniaxial magnetic anisotropy. Adv. Mater. 29, 1701144 (2017).

    Article  Google Scholar 

  21. 21.

    Fradkin, E., Kivelson, S. A., Lawler, M. J., Eisenstein, J. P. & Mackenzie, A. P. Nematic Fermi fluids in condensed matter physics. Annu. Rev. Condens. Matter Phys. 1, 153–178 (2010).

    ADS  CAS  Article  Google Scholar 

  22. 22.

    Borzi, R. A. et al. Formation of a nematic fluid at high fields in Sr3Ru2O7. Science 315, 214–217 (2007).

    ADS  CAS  Article  Google Scholar 

  23. 23.

    Chuang, T. M. et al. Nematic electronic structure in the “parent” state of the iron-based superconductor Ca(Fe1-xCox)2As2. Science 327, 181–184 (2010).

    ADS  CAS  Article  Google Scholar 

  24. 24.

    Fujita, K. et al. Simultaneous transitions in cuprate momentum-space topology and electronic symmetry breaking. Science 344, 612–616 (2014).

    ADS  CAS  Article  Google Scholar 

  25. 25.

    Bode, M. et al. Magnetization-direction-dependent local electronic structure probed by scanning tunneling spectroscopy. Phys. Rev. Lett. 89, 237205 (2002).

    ADS  CAS  Article  Google Scholar 

  26. 26.

    Hanneken, C. et al. Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance. Nat. Nanotechnol. 10, 1039–1042 (2015).

    ADS  CAS  Article  Google Scholar 

  27. 27.

    Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    ADS  CAS  Article  Google Scholar 

  28. 28.

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    ADS  CAS  Article  Google Scholar 

  29. 29.

    Guo, H. M. & Franz, M. Topological insulator on the kagome lattice. Phys. Rev. B 80, 113102 (2009).

    ADS  Article  Google Scholar 

  30. 30.

    Nishimoto, S. et al. Metal-insulator transition of fermions on a kagome lattice at 1/3 filling. Phys. Rev. Lett. 104, 196401 (2010).

    ADS  Article  Google Scholar 

  31. 31.

    Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    ADS  Article  Google Scholar 

  32. 32.

    Seki, S. & Mochizuki, M. Skyrmions in Magnetic Materials 22–26 (Springer, Cham, 2016)

    Google Scholar 

  33. 33.

    Montoya, S. A. et al. Tailoring magnetic energies to form dipole skyrmions and skyrmion lattices. Phys. Rev. B 95, 024415 (2017).

    ADS  Article  Google Scholar 

  34. 34.

    Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  35. 35.

    Hasan, M. Z. et al. topological insulators, helical topological superconductors and Weyl fermion semimetals. Phys. Scr. T164, 014001 (2015); corrigendum T168, 019501 (2016).

    ADS  Article  Google Scholar 

  36. 36.

    Xu, S. Y. et al. Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator. Nat. Phys. 8, 616–622 (2012).

    ADS  Article  Google Scholar 

Download references


Experimental and theoretical work at Princeton University was supported by the Gordon and Betty Moore Foundation (GBMF4547/Hasan) and the United States Department of Energy (US DOE) under the Basic Energy Sciences programme (grant number DOE/BES DE-FG-02-05ER46200). Work at the Institute of Physics of the Chinese Academy of Science (IOP CAS) was supported by the National Key R&D Program of China (grant number 2017YFA0206303). Work at Boston College is supported by US DOE grant DE-FG02-99ER45747. We also acknowledge the Natural Science Foundation of China (grant numbers 11790313, 11774422 and 11774424), National Key R&D Program of China (numbers 2016YFA0300403 and 2017YFA0302903), the Key Research Program of the Chinese Academy of Sciences (number XDPB08-1), Princeton Center for Theoretical Science (PCTS) and Princeton Institute for the Science and Technology of Materials (PRISM)’s Imaging and Analysis Center at Princeton University. T.-R.C. was supported by the Ministry of Science and Technology under a MOST Young Scholar Fellowship (MOST Grant for the Columbus Program number 107-2636-M-006-004-), the National Cheng Kung University, Taiwan, and the National Center for Theoretical Sciences (NCTS), Taiwan. M.Z.H. acknowledges support from Lawrence Berkeley National Laboratory and the Miller Institute of Basic Research in Science at the University of California, Berkeley in the form of a Visiting Miller Professorship. We thank D. Huse and T. Neupert for discussions.

Reviewer information

Nature thanks S. Sachdev and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information




J.-X.Y. and S.S.Z. conducted the STM and STS experiments in consultation with M.Z.H.; H.L.,W.W., C.X. and S.J. synthesized and characterized the sequence of samples; K.J., G.C., B.Z., B.L., K.L., T-R.C., H.L., Z.-Y.L. and Z.W. carried out theoretical analysis in consultation with J.Y. and M.Z.H.; I.B., T.A.C., H.Z., S.-Y.X. and G.B. contributed to sample characterization and instrument calibration; J.-X.Y., S.S.Z. and M.Z.H performed the data analysis and figure development and wrote the paper with contributions from all authors; M.Z.H. supervised the project. All authors discussed the results, interpretation and conclusion.

Corresponding author

Correspondence to M. Zahid Hasan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Longitudinal resistivity measurement.

The longitudinal resistivity ρxx was measured from 380 K to 5 K at zero magnetic field. The current was applied along the ab plane.

Extended Data Fig. 2 Magnetization at 5 K in different magnetic field directions.

The sharp saturation of the magnetization curve for the in-plane field suggests that the easy magnetization axis lies in the ab plane.

Extended Data Fig. 3 Interlayer resistivity evolution as a function of in-plane field azimuth angle.

The black line is the fitting curve. The inset shows a schematic of the sample (black hexagon) with the concentric electrical contacts used in such measurements (inner blue circle, voltage contacts; outer blue ring, current contacts).

Extended Data Fig. 4 Spectroscopic maps with vector-field conditions.

a, Topography of a large FeSn surface. b, Differential conductance map taken in the area shown in a at the energy of the side peak. c, Differential conductance maps with various vector-field conditions taken in the area shown in a at the energy of the side peak. The black arrow indicates the a axis and the red arrow represents the field vector. Their corresponding FFT images (known as QPI signals) are shown in Fig. 3.

Extended Data Fig. 5 Topographic image of a FeSn surface, showing two kinds of dark-spot defect.

The centres of the defects are located at Fe and Sn sites, based on the atomic assignment from Fig. 1.

Extended Data Fig. 6 Nonmagnetic scattering channels for helical spin–momentum texture with different magnetization directions.

a, The upper panel shows that spins cant towards the c axis to generate a net c-axis magnetization. The lower panel shows that backscattering is allowed in all directions. b, c, To generate a net in-plane magnetization, the momentum of the band shifts perpendicular to the in-plane direction and the spins reorganize their directions (similar to the Edelstein effect31), as shown in the upper panels (the faded red arrows represent helical spin texture without magnetization for reference). The spins are still locked perpendicular to the original momentum centre31 (black circle). The lower panels show that backscattering is allowed only in the magnetization direction and forbidden in the perpendicular direction owing to spin reversal.

Extended Data Fig. 7 Lorentz transmission electron microscopy images of the magnetic domain structures taken at different temperatures after turning off the external 0.7-T magnetic field applied along the c axis.

The measurement is taken in the ab plane in these images and the different shades indicate the different orientation of the spin relative to the ab plane. The skyrmions and stripe domains gradually disappear when the temperature drops to 130 K.

Extended Data Fig. 8 STM results on Mn3Sn.

a, b, Single crystals of Mn3Sn and Fe3Sn2, respectively. c, d, Typical STM images of the cleavage surface of Mn3Sn showing no clear atomic lattice structure.

Extended Data Fig. 9 Kagome lattice model.

a, Kagome lattice with Kane–Mele SOI. Here, \({v}_{{\rm{A}}{\rm{B}}}=2({{\boldsymbol{d}}}_{1}\times {{\boldsymbol{d}}}_{2})\cdot {\boldsymbol{z}}/\sqrt{3}=-1\), where d1 is the unit vector from A to C and d2 is the unit vector from C to B. b, Flux Ω enclosed by the fundamental plaquette formed by sites A, B and C on the kagome lattice.

Extended Data Fig. 10 Band dispersion from the kagome model.

a, Red lines are the band structure for Mi along the z direction (Mc) with a Dirac mass generated by λ. Blue lines are the band structure for Mi in the xy plane (Mab), showing a vanishing Dirac mass gap even in the presence of λ. b, Similar to a but including bilayer splitting due to interlayer coupling. Only the spin minority bands are shown.

Extended Data Fig. 11 Effect of spin Berry phase.

a, The spin Berry phase Ωijk is equal to half the solid angle formed by spins Si, Sj and Sk. b, An electron hopping in the chiral spin background is equivalent to hopping in the presence of a gauge flux Ω. c, Band structures in the presence of both λand chiral flux Ω, when the magnetic field and the magnetization are along the xy plane (Mab) and the z direction (Mc).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yin, J., Zhang, S.S., Li, H. et al. Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet. Nature 562, 91–95 (2018).

Download citation


  • Kagome Lattice
  • Strong Spin-orbit Coupling (SOC)
  • Energy Shift
  • Angle-resolved Photoemission Spectroscopy (ARPES)
  • Dzyaloshinskii-Moriya Interaction

Further reading

  • Quantum-limit Chern topological magnetism in TbMn6Sn6

    • Jia-Xin Yin
    • , Wenlong Ma
    • , Tyler A. Cochran
    • , Xitong Xu
    • , Songtian S. Zhang
    • , Hung-Ju Tien
    • , Nana Shumiya
    • , Guangming Cheng
    • , Kun Jiang
    • , Biao Lian
    • , Zhida Song
    • , Guoqing Chang
    • , Ilya Belopolski
    • , Daniel Multer
    • , Maksim Litskevich
    • , Zi-Jia Cheng
    • , Xian P. Yang
    • , Bianca Swidler
    • , Huibin Zhou
    • , Hsin Lin
    • , Titus Neupert
    • , Ziqiang Wang
    • , Nan Yao
    • , Tay-Rong Chang
    • , Shuang Jia
    •  & M. Zahid Hasan

    Nature (2020)

  • Non-Fermi-liquid behavior and saddlelike flat band in the layered ferromagnet AlFe2B2

    • Zhonghao Liu
    • , Shuai Yang
    • , Hao Su
    • , Liqin Zhou
    • , Xiangle Lu
    • , Zhengtai Liu
    • , Jiacheng Gao
    • , Yaobo Huang
    • , Dawei Shen
    • , Yanfeng Guo
    • , Hongming Weng
    •  & Shancai Wang

    Physical Review B (2020)

  • Materials with strong spin-textured bands

    • Zhaoliang Liao
    • , Peiheng Jiang
    • , Zhicheng Zhong
    •  & Run-Wei Li

    npj Quantum Materials (2020)

  • Observation of Weyl fermions in a magnetic non-centrosymmetric crystal

    • Daniel S. Sanchez
    • , Guoqing Chang
    • , Ilya Belopolski
    • , Hong Lu
    • , Jia-Xin Yin
    • , Nasser Alidoust
    • , Xitong Xu
    • , Tyler A. Cochran
    • , Xiao Zhang
    • , Yi Bian
    • , Songtian S. Zhang
    • , Yi-Yuan Liu
    • , Jie Ma
    • , Guang Bian
    • , Hsin Lin
    • , Su-Yang Xu
    • , Shuang Jia
    •  & M. Zahid Hasan

    Nature Communications (2020)

  • Dirac fermions and flat bands in the ideal kagome metal FeSn

    • Mingu Kang
    • , Linda Ye
    • , Shiang Fang
    • , Jhih-Shih You
    • , Abe Levitan
    • , Minyong Han
    • , Jorge I. Facio
    • , Chris Jozwiak
    • , Aaron Bostwick
    • , Eli Rotenberg
    • , Mun K. Chan
    • , Ross D. McDonald
    • , David Graf
    • , Konstantine Kaznatcheev
    • , Elio Vescovo
    • , David C. Bell
    • , Efthimios Kaxiras
    • , Jeroen van den Brink
    • , Manuel Richter
    • , Madhav Prasad Ghimire
    • , Joseph G. Checkelsky
    •  & Riccardo Comin

    Nature Materials (2020)


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.