Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Magnetism and charge density wave order in kagome FeGe

Abstract

Electron correlations often lead to emergent orders in quantum materials, and one example is the kagome lattice materials where topological states exist in the presence of strong correlations between electrons. This arises from the features of the electronic band structure that are associated with the kagome lattice geometry: flat bands induced by destructive interference of the electronic wavefunctions, topological Dirac crossings and a pair of van Hove singularities. Various correlated electronic phases have been discovered in kagome lattice materials, including magnetism, charge density waves, nematicity and superconductivity. Recently, a charge density wave was discovered in the magnetic kagome FeGe, providing a platform for understanding the interplay between charge order and magnetism in kagome materials. Here we observe all three electronic signatures of the kagome lattice in FeGe using angle-resolved photoemission spectroscopy. The presence of van Hove singularities near the Fermi level is driven by the underlying magnetic exchange splitting. Furthermore, we show spectral evidence for the charge density wave as gaps near the Fermi level. Our observations point to the magnetic interaction-driven band modification resulting in the formation of the charge density wave and indicate an intertwined connection between the emergent magnetism and charge order in this moderately correlated kagome metal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structure and electronic structure.
Fig. 2: Key signatures of kagome band structure.
Fig. 3: Temperature evolution of VHS.
Fig. 4: Observation of CDW gap.
Fig. 5: Electron–boson coupling in FeGe.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The band structure and phonon calculations used in this study are available from the corresponding authors upon reasonable request.

References

  1. Paschen, S. & Si, Q. Quantum phases driven by strong correlations. Nat. Rev. Phys. 3, 9–26 (2021).

    Article  Google Scholar 

  2. Keimer, B. et al. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article  ADS  Google Scholar 

  3. Fernandes, R. M. et al. Iron pnictides and chalcogenides: a new paradigm for superconductivity. Nature 601, 35–44 (2022).

    Article  ADS  Google Scholar 

  4. Yi, M., Zhang, Y., Shen, Z.-X. & Lu, D. Role of the orbital degree of freedom in iron-based superconductors. npj Quantum Mater. 2, 57 (2017).

    Article  ADS  Google Scholar 

  5. Mielke, A. Ferromagnetic ground states for the Hubbard model on line graphs. J. Phys. A 24, L73 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  6. Kiesel, M. L., Platt, C. & Thomale, R. Unconventional Fermi surface instabilities in the kagome Hubbard model. Phys. Rev. Lett. 110, 126405 (2013).

    Article  ADS  Google Scholar 

  7. Lin, Z. et al. Flatbands and emergent ferromagnetic ordering in Fe3Sn2 kagome lattices. Phys. Rev. Lett. 121, 096401 (2018).

    Article  ADS  Google Scholar 

  8. Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018).

    Article  ADS  Google Scholar 

  9. Kang, M. et al. Dirac fermions and flat bands in the ideal kagome metal FeSn. Nat. Mater. 19, 163–169 (2020).

    Article  ADS  Google Scholar 

  10. Xie, Y. et al. Spin excitations in metallic kagome lattice FeSn and CoSn. Commun. Phys. 4, 240 (2021).

    Article  Google Scholar 

  11. Yin, J.-X. et al. Quantum-limit Chern topological magnetism in TbMn6Sn6. Nature 583, 533–536 (2020).

    Article  ADS  Google Scholar 

  12. Li, M. et al. Dirac cone, flat band and saddle point in kagome magnet YMn6Sn6. Nat. Commun. 12, 3129 (2021).

    Article  ADS  Google Scholar 

  13. Morali, Noam et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 365, 1286–1291 (2019).

    Article  ADS  Google Scholar 

  14. Liu, D. F. et al. Magnetic Weyl semimetal phase in a kagomé crystal. Science 365, 1282–1285 (2019).

    Article  ADS  Google Scholar 

  15. Wang, Q. et al. Field-induced topological Hall effect and double-fan spin structure with a c-axis component in the metallic kagome antiferromagnetic compound YMn6Sn6. Phys. Rev. B 103, 014416 (2021).

    Article  ADS  Google Scholar 

  16. Yin, J.-X. et al. Negative flat band magnetism in a spin–orbit-coupled correlated kagome magnet. Nat. Phys. 15, 443–448 (2019).

    Article  Google Scholar 

  17. Ortiz, B. R. et al. CsV3Sb5: a Z2 topological kagome metal with a superconducting ground state. Phys. Rev. Lett. 125, 247002 (2020).

    Article  ADS  Google Scholar 

  18. Zhao, H. et al. Cascade of correlated electron states in the kagome superconductor CsV3Sb5. Nature 599, 216–221 (2021).

    Article  ADS  Google Scholar 

  19. Chen, Hui et al. Roton pair density wave in a strong-coupling kagome superconductor. Nature 599, 222–228 (2021).

    Article  ADS  Google Scholar 

  20. Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  21. Jiang, Y.-X. et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353–1357 (2021).

    Article  ADS  Google Scholar 

  22. Mielke, C. et al. Time-reversal symmetry-breaking charge order in a correlated kagome superconductor. Nature 602, 245–250 (2022).

    Article  ADS  Google Scholar 

  23. Feng, X., Jiang, K., Wang, Z. & Hu, J. Chiral flux phase in the Kagome superconductor AV3Sb5. Sci. Bull. 66, 1384–1388 (2021).

    Article  Google Scholar 

  24. Denner, M. M., Thomale, R. & Neupert, T. Analysis of charge order in the kagome metal AV3Sb5 (A = K, Rb, Cs). Phys. Rev. Lett. 127, 217601 (2021).

    Article  ADS  Google Scholar 

  25. Lin, Y.-P. & Nandkishore, R. M. Complex charge density waves at van Hove singularity on hexagonal lattices: Haldane-model phase diagram and potential realization in the kagome metals AV3Sb5 (A = K, Rb, Cs). Phys. Rev. B 104, 045122 (2021).

    Article  ADS  Google Scholar 

  26. Park, T., Ye, M. & Balents, L. Electronic instabilities of kagome metals: saddle points and Landau theory. Phys. Rev. B 104, 035142 (2021).

    Article  ADS  Google Scholar 

  27. Tan, H. et al. Charge density waves and electronic properties of superconducting kagome metals. Phys. Rev. Lett. 127, 046401 (2021).

    Article  ADS  Google Scholar 

  28. Setty, C., Hu, H. Chen, L. & Si, Q. Electron correlations and T-breaking density wave order in a Z2 kagome metal. Preprint at https://arxiv.org/abs/2105.15204 (2021).

  29. Sales, B. C. et al. Tuning the flat bands of the kagome metal CoSn with Fe, In, or Ni doping. Phys. Rev. Mater. 5, 044202 (2021).

    Article  Google Scholar 

  30. Li, H. et al. Conjoined charge density waves in the kagome superconductor CV3Sb5. Nat. Commun. 13, 6348 (2022).

    Article  ADS  Google Scholar 

  31. Qian, T. et al. Revealing the competition between charge density wave and superconductivity in CsV3Sb5 through uniaxial strain. Phys. Rev. B 104, 144506 (2021).

    Article  ADS  Google Scholar 

  32. Teng, X. et al. Discovery of charge density wave in a correlated kagome lattice antiferromagnet. Nature 609, 490–495 (2022).

    Article  ADS  Google Scholar 

  33. Yin, J.-X. et al. Discovery of charge order and corresponding edge state in kagome magnet FeGe. Phys. Rev. Lett. 129, 166401 (2022).

    Article  ADS  Google Scholar 

  34. Ohoyama, T., Kanematsu, K. & Yasukōchi, K. A new intermetallic compound FeGe. J. Phys. Soc. Jpn 18, 589–589 (1963).

    Article  ADS  Google Scholar 

  35. Bernhard, J., Lebech, B. & Beckman, O. Neutron diffraction studies of the low-temperature magnetic structure of hexagonal FeGe. J. Phys. F 14, 2379–2393 (1984).

    Article  ADS  Google Scholar 

  36. Huang, L. & Lu, H. Signatures of Hundness in kagome metals. Phys. Rev. B 102, 125130 (2020).

    Article  ADS  Google Scholar 

  37. Setty, C. et al. Electron correlations and charge density wave in the topological kagome metal FeGe. Preprint at https://arxiv.org/abs/2203.01930 (2022).

  38. Ptok, A. et al. Chiral phonons in the honeycomb sublattice of layered CoSn-like compounds. Phys. Rev. B 104, 054305 (2021).

    Article  ADS  Google Scholar 

  39. Sobota, J., He, Y. & Shen, Z.-X. Angle-resolved photoemission studies of quantum materials. Rev. Mod. Phys. 93, 025006 (2021).

    Article  ADS  Google Scholar 

  40. Kang, M. et al. Twofold van Hove singularity and origin of charge order in topological kagome superconductor CsV3Sb5. Nat. Phys. 18, 301–308 (2021).

    Article  Google Scholar 

  41. Yu, T. L. et al. Colossal band renormalization and Stoner ferromagnetism induce by electron–antiferromagnetic–magnon coupling. Nat. Commun. 13, 6560 (2020).

    Article  ADS  Google Scholar 

  42. Wray, L. et al. Momentum dependence of superconducting gap, strong-coupling dispersion kink, and tightly bound Cooper pairs in the high-Tc (Sr,Ba)1−x(K,Na)xFe2As2 superconductors. Phys. Rev. B 78, 184508 (2008).

    Article  ADS  Google Scholar 

  43. Grimvall, G. in Metals (ed Wohlfarth, E.) (North-Holland, 1981).

  44. Plummer, E. W., Shi, J. R., Tang, S. J., Rotenberg, E. & Kevan, S. D. Enhanced electron–phonon coupling at metal surfaces. Prog. Surf. Sci. 74, 251–268 (2003).

    Article  ADS  Google Scholar 

  45. Luo, H. et al. Electronic nature of charge density wave and electron–phonon coupling in kagome superconductor KV3Sb5. Nat. Commun. 13, 273 (2022).

    Article  ADS  Google Scholar 

  46. Xie, Y. et al. Electron–phonon coupling in the charge density wave state of CsV3Sb5. Phys. Rev. B 105, L140501 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  47. Li, H. et al. Observation of unconventional charge density wave without acoustic phonon anomaly in kagome superconductors AV3Sb5 (A = Rb, Cs). Phys. Rev. X 11, 031050 (2021).

    Google Scholar 

  48. Wu, S. et al. Charge density wave order in kagome metal AV3Sb5 (A = Cs, Rb, K). Phys. Rev. B 105, 155106 (2022).

    Article  ADS  Google Scholar 

  49. Wang, C. et al. Origin of charge density wave in the layered kagome metal CsV3Sb5. Phys. Rev. B 105, 045135 (2022).

    Article  ADS  Google Scholar 

  50. Liu, Z. et al. Charge-density-wave-induced bands renormalization and energy gaps in a kagome superconductor RbV3Sb5. Phys. Rev. X 11, 041010 (2021).

    Google Scholar 

  51. Abernathy, D. L. et al. Design and operation of the wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source. Rev. Sci. Instrum. 83, 15114 (2012).

    Article  Google Scholar 

  52. Arnold, O. et al. Mantid—data analysis and visualization package for neutron scattering and μSR experiments. Nucl. Instrum. 764, 156–166 (2014).

    Article  Google Scholar 

  53. Ewings, R. A. et al. Horace: software for the analysis of data from single crystal spectroscopy experiments at time-of-flight neutron instruments. Nucl. Instrum. Methods Phys. Res. A 834, 132 (2016).

    Article  ADS  Google Scholar 

  54. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  55. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  56. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. L 77, 3865 (1996).

    Article  ADS  Google Scholar 

  57. Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1 (2015).

    Article  ADS  Google Scholar 

  58. Mostofi, A. A. et al. wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685 (2008).

    Article  ADS  MATH  Google Scholar 

  59. Johannes, M. D. & Mazin, I. I. Fermi surface nesting and the origin of charge density waves in metals. Phys. Rev. B 77, 165135 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Zhu, C. Lane, Q. Si and C. Setty for helpful discussions. The ARPES work is supported by the Gordon and Betty Moore Foundation’s EPiQS Initiative through grant no. GBMF9470 (M.Y.), Robert A. Welch Foundation grant no. C-2024 (M.Y.) and U.S. Department of Energy (DOE) grant bo. DE-SC0021421 (M.Y.). The neutron scattering and single-crystal synthesis work at Rice was supported by US NSF-DMR-2100741 (P.D.) and by the Robert A. Welch Foundation under grant no. C-1839 (P.D.), respectively. The work at the University of California, Berkeley was supported by the U.S. DOE under contract no. DE-AC02-05-CH11231 within the Quantum Materials Program (KC2202) (R.J.B.). This research used resources of the Advanced Light Source and the Stanford Synchrotron Radiation Lightsource, both U.S. DOE Office of Science User Facilities under contract nos. DE-AC02-05CH11231 and AC02-76SF00515, respectively. A portion of this research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by ORNL. B.Y. acknowledges financial support from the European Research Council (ERC Consolidator grant “NonlinearTopo”, no. 815869) and an ISF personal research grant (no. 2932/21). JSO acknowledges the support of the NSF Grants Nos. DMR-1921798 and DMR-1921847.

Author information

Authors and Affiliations

Authors

Contributions

M.Y., P.D. and R.J.B. managed the project. The single-crystal FeGe samples were grown by X.T. and B.G. under the guidance of P.D. APRES experiments were carried out by J.S.O., X.T., J.H. and M.Y. with the assistance of M.H., D.L., C.J., A.B. and E.R. First-principles calculations were performed by H.T. and B.Y. Neutron scattering measurements and analysis were carried out by G.G., X.T., L.C. and P.D. The paper was written by M.Y., P.D., X.T., J.S.O. and L.C. with input from and significant discussions with all co-authors.

Corresponding authors

Correspondence to Robert J. Birgeneau, Pengcheng Dai or Ming Yi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Niels Schröter and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. S1–S11 and Sections 1–8.

Source data

Source Data Fig. 1

DFT calculations and script to extract spin-resolved calculations.

Source Data Fig. 3

Raw data for Fig. 3b–d,f–h.

Source Data Fig. 4

Raw data for Fig. 4g,h,j,l.

Source Data Fig. 5

Raw data for Fig. 5b–d and fitted data for Fig. 5h,i.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, X., Oh, J.S., Tan, H. et al. Magnetism and charge density wave order in kagome FeGe. Nat. Phys. 19, 814–822 (2023). https://doi.org/10.1038/s41567-023-01985-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-01985-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing