Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sorting ultracold atoms in a three-dimensional optical lattice in a realization of Maxwell’s demon

Abstract

In 1872, Maxwell proposed his famous ‘demon’ thought experiment1. By discerning which particles in a gas are hot and which are cold, and then performing a series of reversible actions, Maxwell’s demon could rearrange the particles into a manifestly lower-entropy state. This apparent violation of the second law of thermodynamics was resolved by twentieth-century theoretical work2: the entropy of the Universe is often increased while gathering information3, and there is an unavoidable entropy increase associated with the demon’s memory4. The appeal of the thought experiment has led many real experiments to be framed as demon-like. However, past experiments had no intermediate information storage5, yielded only a small change in the system entropy6,7 or involved systems of four or fewer particles8,9,10. Here we present an experiment that captures the full essence of Maxwell’s thought experiment. We start with a randomly half-filled three-dimensional optical lattice with about 60 atoms. We make the atoms sufficiently vibrationally cold so that the initial disorder is the dominant entropy. After determining where the atoms are, we execute a series of reversible operations to create a fully filled sublattice, which is a manifestly low-entropy state. Our sorting process lowers the total entropy of the system by a factor of 2.44. This highly filled ultracold array could be used as the starting point for a neutral-atom quantum computer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Motion steps and sorting algorithm.
Fig. 2: Perfect filling of 4 × 4 × 3 and 5 × 5 × 2 sublattices.
Fig. 3: Filling fraction and entropy.
Fig. 4: Microwave spectra showing the results of projection sideband cooling18.

References

  1. 1.

    Maxwell, J. C. Theory of Heat (Longmans, Green and Co., London, 1871).

    Google Scholar 

  2. 2.

    Leff, H. S. & Rex, A. F. Maxwell’s Demon: Entropy, Information, Computing (Princeton University Press, Princeton, 1990).

    Book  Google Scholar 

  3. 3.

    Brillouin, L. Maxwell’s demon cannot operate – information and entropy. 1. J. Appl. Phys. 22, 334–337 (1951).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961).

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Price, G. N., Bannerman, S. T., Viering, K., Narevicius, E. & Raizen, M. G. Single-photon atomic cooling. Phys. Rev. Lett. 100, 093004 (2008).

    ADS  Article  PubMed  CAS  Google Scholar 

  6. 6.

    Barredo, D., de Leseleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

    ADS  Article  PubMed  CAS  Google Scholar 

  7. 7.

    Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

    ADS  Article  PubMed  CAS  Google Scholar 

  8. 8.

    Robens, C. et al. Low-entropy states of neutral atoms in polarization-synthesized optical lattices. Phys. Rev. Lett. 118, 065302 (2017).

    ADS  MathSciNet  Article  PubMed  Google Scholar 

  9. 9.

    Lester, B. J., Luick, N., Kaufman, A. M., Reynolds, C. M. & Regal, C. A. Rapid production of uniformly filled arrays of neutral atoms. Phys. Rev. Lett. 115, 073003 (2015).

    ADS  Article  PubMed  CAS  Google Scholar 

  10. 10.

    Strasberg, P., Schaller, G., Brandes, T. & Esposito, M. Thermodynamics of a physical model implementing a Maxwell demon. Phys. Rev. Lett. 110, 040601 (2013).

    ADS  Article  PubMed  CAS  Google Scholar 

  11. 11.

    Barredo, D., Lienhard, V., de Léséleuc, S., Lahaye, T. & Browaeys, A. Synthetic three-dimensional atomic structures assembled atom by atom. Nature http://dx.doi.org/10.1038/s41586-018-0450-2 (2018).

  12. 12.

    Kim, H. et al. In situ single-atom array synthesis using dynamic holographic optical tweezers. Nat. Commun. 7, 13317 (2016).

    ADS  Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. 13.

    Saffman, M. Quantum computing with atomic qubits and Rydberg interactions: progress and challenges. J. Phys. B 49, 202001 (2016).

    ADS  Article  CAS  Google Scholar 

  14. 14.

    Wang, Y., Kumar, A., Wu, T. Y. & Weiss, D. S. Single-qubit gates based on targeted phase shifts in a 3D neutral atom array. Science 352, 1562–1565 (2016).

    ADS  MathSciNet  Article  PubMed  MATH  CAS  Google Scholar 

  15. 15.

    Weiss, D. S. et al. Another way to approach zero entropy for a finite system of atoms. Phys. Rev. A 70, 040302 (2004).

    ADS  Article  CAS  Google Scholar 

  16. 16.

    Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    ADS  Article  PubMed  CAS  Google Scholar 

  17. 17.

    Nelson, K. D., Li, X. & Weiss, D. S. Imaging single atoms in a three-dimensional array. Nat. Phys. 3, 556–560 (2007).

    Article  CAS  Google Scholar 

  18. 18.

    Li, X., Corcovilos, T. A., Wang, Y. & Weiss, D. S. 3D projection sideband cooling. Phys. Rev. Lett. 108, 103001 (2012).

    ADS  Article  PubMed  CAS  Google Scholar 

  19. 19.

    Wang, Y., Zhang, X. L., Corcovilos, T. A., Kumar, A. & Weiss, D. S. Coherent addressing of individual neutral atoms in a 3D optical lattice. Phys. Rev. Lett. 115, 043003 (2015).

    ADS  Article  PubMed  Google Scholar 

  20. 20.

    Deutsch, I. H. & Jessen, P. S. Quantum-state control in optical lattices. Phys. Rev. A 57, 1972–1986 (1998).

    ADS  Article  CAS  Google Scholar 

  21. 21.

    Vala, J. et al. Perfect pattern formation of neutral atoms in an addressable optical lattice. Phys. Rev. A 71, 032324 (2005).

    ADS  Article  CAS  Google Scholar 

  22. 22.

    Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).

    ADS  Article  CAS  Google Scholar 

  23. 23.

    Olshanii, M. & Weiss, D. Producing Bose–Einstein condensates using optical lattices. Phys. Rev. Lett. 89, 090404 (2002).

    ADS  Article  PubMed  CAS  Google Scholar 

  24. 24.

    Chu, S., Hollberg, L., Bjorkholm, J. E., Cable, A. & Ashkin, A. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett. 55, 48–51 (1985).

    ADS  Article  PubMed  CAS  Google Scholar 

  25. 25.

    Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    ADS  Article  PubMed  CAS  Google Scholar 

  26. 26.

    Szilard, L. Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Z. Phys. 53, 840–856 (1929).

    ADS  Article  MATH  CAS  Google Scholar 

  27. 27.

    Gaunt, A. L., Schmidutz, T. F., Gotlibovych, I., Smith, R. P. & Hadzibabic, Z. Bose–Einstein condensation of atoms in a uniform potential. Phys. Rev. Lett. 110, 200406 (2013).

    ADS  Article  PubMed  CAS  Google Scholar 

  28. 28.

    Williams, R. A. et al. Dynamic optical lattices: two-dimensional rotating and accordion lattices for ultracold atoms. Opt. Express 16, 16977–16983 (2008).

    ADS  Article  PubMed  CAS  Google Scholar 

  29. 29.

    Hu, J. Z. et al. Creation of a Bose-condensed gas of Rb-87 by laser cooling. Science 358, 1078–1080 (2017).

    ADS  Article  PubMed  CAS  Google Scholar 

  30. 30.

    Jaksch, D., Briegel, H. J., Cirac, J. I., Gardiner, C. W. & Zoller, P. Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975–1978 (1999).

    ADS  Article  CAS  Google Scholar 

  31. 31.

    Kaufman, A. M. et al. Entangling two transportable neutral atoms via local spin exchange. Nature 527, 208–211 (2015).

    ADS  Article  PubMed  CAS  Google Scholar 

  32. 32.

    Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    ADS  Article  PubMed  CAS  Google Scholar 

  33. 33.

    Labuhn, H. et al. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models. Nature 534, 667–670 (2016).

    ADS  Article  PubMed  CAS  Google Scholar 

  34. 34.

    Weimer, H., Muller, M., Lesanovsky, I., Zoller, P. & Buchler, H. P. A Rydberg quantum simulator. Nat. Phys. 6, 382–388 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Science Foundation through grant PHY-1520976.

Author information

Affiliations

Authors

Contributions

All authors contributed to the design, execution and analysis of the experiment and the writing of the manuscript. A.K., T.-Y.W. and F.G. collected all the data.

Corresponding author

Correspondence to David S. Weiss.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Motion step.

A motion step to move n atoms is shown. n atoms are sequentially targeted by the addressing beams and transferred from the ‘stationary’ state to the ‘motion’ state using microwaves. The electro-optic modulator (EO) voltages are ramped up to the half-wave voltage (Vλ/2) in order to move atoms by half of the lattice spacing. After motion, the atoms are optically pumped so that they all return to the stationary state. The EO voltages are then ramped back down. A final optical pumping (OP) ensures optimal preparation for the next motion step.

Extended Data Fig. 2 Motion fidelities.

a, b, Measured motion fidelity as a function of the number of motion steps in |F = 4, mF = −4〉 (a) and |F = 3, mF = −3〉 (b) in the x (maroon circles), y (blue squares) and z (green diamonds) directions. The lines are fits to the data. The error bars represent one standard deviation. Each point corresponds to about 600 atoms.

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Wu, TY., Giraldo, F. et al. Sorting ultracold atoms in a three-dimensional optical lattice in a realization of Maxwell’s demon. Nature 561, 83–87 (2018). https://doi.org/10.1038/s41586-018-0458-7

Download citation

Keywords

  • Three-dimensional Optical Lattice
  • Full Essence
  • Step Motion
  • Motion Fidelity
  • Field Programmable Gate Array (FPGAs)

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing