Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deep learning of aftershock patterns following large earthquakes

Matters Arising to this article was published on 02 October 2019

Abstract

Aftershocks are a response to changes in stress generated by large earthquakes and represent the most common observations of the triggering of earthquakes. The maximum magnitude of aftershocks and their temporal decay are well described by empirical laws (such as Bath’s law1 and Omori’s law2), but explaining and forecasting the spatial distribution of aftershocks is more difficult. Coulomb failure stress change3 is perhaps the most widely used criterion to explain the spatial distributions of aftershocks4,5,6,7,8, but its applicability has been disputed9,10,11. Here we use a deep-learning approach to identify a static-stress-based criterion that forecasts aftershock locations without prior assumptions about fault orientation. We show that a neural network trained on more than 131,000 mainshock–aftershock pairs can predict the locations of aftershocks in an independent test dataset of more than 30,000 mainshock–aftershock pairs more accurately (area under curve of 0.849) than can classic Coulomb failure stress change (area under curve of 0.583). We find that the learned aftershock pattern is physically interpretable: the maximum change in shear stress, the von Mises yield criterion (a scaled version of the second invariant of the deviatoric stress-change tensor) and the sum of the absolute values of the independent components of the stress-change tensor each explain more than 98 per cent of the variance in the neural-network prediction. This machine-learning-driven insight provides improved forecasts of aftershock locations and identifies physical quantities that may control earthquake triggering during the most active part of the seismic cycle.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mainshock–aftershock examples.
Fig. 2: Comparison of performance.

References

  1. Båth, M. Lateral inhomogeneities of the upper mantle. Tectonophysics 2, 483–514 (1965).

    ADS  Google Scholar 

  2. Utsu, T. A statistical study on the occurrence of aftershocks. Geophys. Mag. 30, 521–605 (1961).

    Google Scholar 

  3. King, G. C., Stein, R. S. & Lin, J. Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Am. 84, 935–953 (1994).

    Google Scholar 

  4. Toda, S., Stein, R. S., Reasenberg, P. A., Dieterich, J. H. & Yoshida, A. Stress transferred by the 1995 M w = 6.9 Kobe, Japan, shock: effect on aftershocks and future earthquake probabilities. J. Geophys. Res. 103, 24543–24565 (1998).

    ADS  Google Scholar 

  5. Parsons, T., Stein, R. S., Simpson, R. W. & Reasenberg, P. A. Stress sensitivity of fault seismicity: a comparison between limited-offset oblique and major strike-slip faults. J. Geophys. Res. 104, 20183–20202 (1999).

    ADS  Google Scholar 

  6. Reasenberg, P. A. & Simpson, R. W. Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake. Science 255, 1687–1690 (1992).

    ADS  CAS  Google Scholar 

  7. Jacques, E., King, G. C. P., Tapponnier, P., Ruegg, J. C. & Manighetti, I. Seismic activity triggered by stress changes after the 1978 events in the Asal Rift, Djibouti. Geophys. Res. Lett. 23, 2481–2484 (1996).

    ADS  Google Scholar 

  8. Nostro, C., Cocco, M. & Belardinelli, M. E. Static stress changes in extensional regimes: an application to southern Apennines (Italy). Bull. Seismol. Soc. Am. 87, 234–248 (1997).

    Google Scholar 

  9. Hardebeck, J. L., Nazareth, J. J. & Hauksson, E. The static stress change triggering model: constraints from two southern California aftershock sequences. J. Geophys. Res. 103, 24427–24437 (1998).

    ADS  Google Scholar 

  10. Mallman, E. P. & Zoback, M. D. Assessing elastic Coulomb stress transfer models using seismicity rates in southern California and southwestern Japan. J. Geophys. Res. 112, B03304 (2007).

    ADS  Google Scholar 

  11. Felzer, K. R. & Brodsky, E. E. Testing the stress shadow hypothesis. J. Geophys. Res. 110, B05S09 (2005).

    ADS  Google Scholar 

  12. Okada, Y. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 82, 1018–1040 (1992).

    Google Scholar 

  13. Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

    Google Scholar 

  14. Das, S. & Scholz, C. H. Off-fault aftershock clusters caused by shear stress increase? Bull. Seismol. Soc. Am. 71, 1669–1675 (1981).

    Google Scholar 

  15. Kagan, Y. Y. & Jackson, D. D. Spatial aftershock distribution: effect of normal stress. J. Geophys. Res. 103, 24453–24467 (1998).

    ADS  Google Scholar 

  16. Meade, B. J., DeVries, P., Faller, J., Viegas, F. & Wattenberg, M. What is better than Coulomb failure stress? A ranking of scalar static stress triggering mechanisms from 105 mainshock–aftershock pairs. Geophys. Res. Lett. 44, 11409–11416 (2017).

    ADS  Google Scholar 

  17. Ma, K. F., Song, T. R. A., Lee, S. J. & Wu, H. I. Spatial slip distribution of the September 20, 1999, Chi-Chi, Taiwan, earthquake (M w7.6)—inverted from teleseismic data. Geophys. Res. Lett. 27, 3417–3420 (2000).

    ADS  Google Scholar 

  18. Yoshida, S. et al. Joint inversion of near- and far-field waveforms and geodetic data for the rupture process of the 1995 Kobe earthquake. J. Phys. Earth 44, 437–454 (1996).

    Google Scholar 

  19. Shao, G. & Ji, C. Preliminary result of the Oct 8, 2005 Mw 7.64 Pakistan earthquake. UCSB http://www.geol.ucsb.edu/faculty/ji/big_earthquakes/2005/10/smooth/2005pakistan.html (accessed 2 June 2018).

  20. The Theano Development Team. Theano: a python framework for fast computation of mathematical expressions. Preprint at http://arxiv.org/abs/1605.02688 (2016).

  21. Abadi, M. et al. TensorFlow: large-scale machine learning on heterogeneous systems. In Proc. 12th USENIX Symposium on Operating Systems Design and Implementation 265–283 (USENIX Association, 2016).

  22. Zeiler, M. D. ADADELTA: an adaptive learning rate method. Preprint at https://arxiv.org/abs/1212.5701 (2012).

  23. Atzori, S. et al. The 2010–2011 Canterbury, New Zealand, seismic sequence: multiple source analysis from InSAR data and modeling. J. Geophys. Res. 117, B08305 (2012).

    ADS  Google Scholar 

  24. Yagi, Y., Kikuchi, M., Yoshida, S. & Yamanaka, Y. Source process of the Hyuga-nada Earthquake of April 1, 1968 (M JMA7.5), and its relationship to the subsequent seismicity. Zishin J. Seis. Soc. Japan. 51, 139–148 (1998) [in Japanese].

    Google Scholar 

  25. Nagai, R., Kikuchi, M. & Yamanaka, Y. Comparative study on the source processes of recurrent large earthquakes in Sariku-oki Region: the 1968 Tokachi-oki earthquake and the 1994 Sanriku-oki earthquake. Zishin J. Seis. Soc. Japan 54, 267–280 (2001) [in Japanese].

    Google Scholar 

  26. Takeo, M. Fault heterogeneity of inland earthquakes in Japan. Bull. Earthq. Res. Inst. Univ. Tokyo 65, 541–569 (1990).

    Google Scholar 

  27. Heaton, T. H. The 1971 San Fernando earthquake: a double event? Bull. Seismol. Soc. Am. 72, 2037–2062 (1982).

    Google Scholar 

  28. Hartzell, S. & Langer, C. Importance of model parameterization in finite fault inversions; application to the 1974 M w 8.0 Peru earthquake. J. Geophys. Res. 98, 22123–22134 (1993).

    ADS  Google Scholar 

  29. Liu, H. & Helmberger, D. V. The near-source ground motion of the 6 August 1979 Coyote Lake, California, earthquake. Bull. Seismol. Soc. Am. 73, 201–218 (1983).

    Google Scholar 

  30. Mendoza, C. Finite-fault analysis of the 1979 March 14 Petatlan, Mexico, earthquake using teleseismic P-wave-forms. Geophys. J. Int. 121, 675–683 (1995).

    ADS  Google Scholar 

  31. Takeo, M. Rupture process of the 1980 Izu-Hanto-Toho-Oki earthquake deduced from strong motion seismograms. Bull. Seismol. Soc. Am. 78, 1074–1091 (1988).

    Google Scholar 

  32. Hartzell, S., Langer, C. & Mendoza, C. Rupture histories of eastern North American earthquakes. Bull. Seismol. Soc. Am. 84, 1703–1724 (1994).

    Google Scholar 

  33. Mendoza, C. & Hartzell, S. H. Inversion for slip distribution using teleseismic P waveforms: North Palm Springs, Borah Peak, and Michoacan earthquakes. Bull. Seismol. Soc. Am. 78, 1092–1111 (1988).

    Google Scholar 

  34. Fukuyama, E. & Irikura, K. Rupture process of the 1983 Japan Sea (Akita-Oki) earthquake using a waveform inversion method. Bull. Seismol. Soc. Am. 76, 1623–1640 (1986).

    Google Scholar 

  35. Hartzell, S. H. & Heaton, T. H. Rupture history of the 1984 Morgan Hill, California, earthquake from the inversion of strong motion records. Bull. Seismol. Soc. Am. 76, 649–674 (1986).

    Google Scholar 

  36. Takeo, M. & Mikami, N. Inversion of strong motion seismograms for the source process of the Naganoken-Seibu earthquake of 1984. Tectonophysics 144, 271–285 (1987).

    ADS  Google Scholar 

  37. Mendoza, C., Hartzell, S. & Monfret, T. Wide-band analysis of the 3 March 1985 Central Chile earthquake: overall source process and rupture history. Bull. Seismol. Soc. Am. 84, 269–283 (1994).

    Google Scholar 

  38. Mendoza, C. Coseismic slip of two large Mexican earthquakes from teleseismic body wave-forms: implications for asperity interaction in the Michoacan Plate Boundary Segment. J. Geophys. Res. 98, 8197–8210 (1993).

    ADS  Google Scholar 

  39. Hartzell, S. Comparison of seismic waveform inversion results for the rupture history of a finite fault: application to the 1986 North Palm-Springs, California, earthquake. J. Geophys. Res. 94, 7515–7534 (1989).

    ADS  Google Scholar 

  40. Larsen, S., Reilinger, R., Neugebauer, H. & Strange, W. Global positioning system measurements of deformations associated with the 1987 Superstition Hills earthquake: evidence for conjugate faulting. J. Geophys. Res. 97, 4885–4902 (1992).

    ADS  Google Scholar 

  41. Wald, D. J., Helmberger, D. V. & Hartzell, S. H. Rupture process of the 1987 Superstition Hills earthquake from the inversion of strong-motion data. Bull. Seismol. Soc. Am. 80, 1079–1098 (1990).

    Google Scholar 

  42. Hartzell, S. H. & Iida, M. Source complexity of the 1987 Whittier Narrows, California, earthquake from the inversion of strong motion records. J. Geophys. Res. 95, 12475–12485 (1990).

    ADS  Google Scholar 

  43. Emolo, A. & Zollo, A. Kinematic source parameters for the 1989 Loma Prieta earthquake from the nonlinear inversion of accelerograms. Bull. Seismol. Soc. Am. 95, 981–994 (2005).

    Google Scholar 

  44. Steidl, J. H., Archuleta, R. J. & Hartzell, S. H. Rupture history of the 1989 Loma Prieta, California, earthquake. Bull. Seismol. Soc. Am. 81, 1573–1602 (1991).

    Google Scholar 

  45. Wald, D. J., Helmberger, D. V. & Heaton, T. H. Rupture model of the 1989 Loma Prieta earthquake from the inversion of strong-motion and broad-band teleseismic data. Bull. Seismol. Soc. Am. 81, 1540–1572 (1991).

    Google Scholar 

  46. Hough, S. E. & Dreger, D. S. Source parameters of the 23 April 1992 M 6.1 Joshua Tree, California, earthquake and its aftershocks: empirical Green’s function analysis of GEOS and TERRAscope data. Bull. Seismol. Soc. Am. 85, 1576–1590 (1995).

    Google Scholar 

  47. Cohee, B. P. & Beroza, G. C. Slip distribution of the 1992 Landers earthquake and its implications for earthquake source mechanics. Bull. Seismol. Soc. Am. 84, 692–712 (1994).

    Google Scholar 

  48. Cotton, F. & Campillo, M. Frequency-domain inversion of strong motions: application to the 1992 Landers Earthquake. J. Geophys. Res. 100, 3961–3975 (1995).

    ADS  Google Scholar 

  49. Hernandez, B., Cotton, F. & Campillo, M. Contribution of radar interferometry to a two-step inversion of the kinematic process of the 1992 Landers earthquake. J. Geophys. Res. 104, 13083–13099 (1999).

    ADS  Google Scholar 

  50. Wald, D. J. & Heaton, T. H. Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake. Bull. Seismol. Soc. Am. 84, 668–691 (1994).

    Google Scholar 

  51. Zeng, Y. & Anderson, J. Evaluation of Numerical Procedures for Simulating Near-Fault Long-Period Ground Motions using Zeng Method. Report No. 2000/01 to the PEER Utilities Program (Pacific Earthquake Engineering Research Center, UC Berkeley, 2000).

  52. Mendoza, C. & Fukuyama, E. The July 12, 1993, Hokkaido-Nansei-Oki, Japan, earthquake: coseismic slip pattern from strong-motion and teleseismic recordings. J. Geophys. Res. 101, 791–801 (1996).

    ADS  Google Scholar 

  53. Hartzell, S., Liu, P. C. & Mendoza, C. The 1994 Northridge, California, earthquake; investigation of rupture velocity, risetime, and high-frequency radiation. J. Geophys. Res. 101, 20091–20108 (1996).

    ADS  Google Scholar 

  54. Hudnut, K. W. et al. Co-seismic displacements of the 1994 Northridge, California, earthquake. Bull. Seismol. Soc. Am. 86, S19–S36 (1996).

    Google Scholar 

  55. Shen, Z.-K. et al. Northridge earthquake rupture models based on the global positioning system measurements. Bull. Seismol. Soc. Am. 86, S37–S48 (1996).

    Google Scholar 

  56. Wald, D. J., Heaton, T. H. & Hudnut, K. W. The slip history of the 1994 Northridge, California, earthquake determined from strong-motion, teleseismic, GPS, and leveling data. Bull. Seismol. Soc. Am. 86, S49–S70 (1996).

    Google Scholar 

  57. Nakayama, W. & Takeo, M. Slip history of the 1994 Sanriku-Haruka-Oki, Japan, earthquake deduced from strong-motion data. Bull. Seismol. Soc. Am. 87, 918–931 (1997).

    Google Scholar 

  58. Mendoza, C. & Hartzell, S. Fault-slip distribution of the 1995 Colima-Jalisco, Mexico, earthquake. Bull. Seismol. Soc. Am. 89, 1338–1344 (1999).

    Google Scholar 

  59. Courboulex, F., Santoyo, M. A., Pacheco, J. F. & Singh, S. K. The 14 September 1995 (M = 7.3) Copala, Mexico, earthquake: a source study using teleseismic, regional, and local data. Bull. Seismol. Soc. Am. 87, 999–1010 (1997).

    Google Scholar 

  60. Yagi, Y., Kikuchi, M., Yoshida, S. & Sagiya, T. Comparison of the coseismic rupture with the aftershock distribution in the Hyuga-nada earthquakes of 1996. Geophys. Res. Lett. 26, 3161–3164 (1999).

    ADS  Google Scholar 

  61. Salichon, J. et al. Joint inversion of broadband teleseismic and interferometric synthetic aperture radar (InSAR) data for the slip history of the M w = 7.7, Nazca ridge (Peru) earthquake of 12 November 1996. J. Geophys. Res. 108, 2085 (2003).

    ADS  Google Scholar 

  62. Hernandez, B. et al. Rupture history of the 1997 Umbria-Marche (central Italy) main shocks from the inversion of GPS, DInSAR and near field strong motion data. Ann. Geophys. 47, 1355–1376 (2004).

    Google Scholar 

  63. Horikawa, H. Earthquake doublet in Kagoshima, Japan: rupture of asperities in a stress shadow. Bull. Seismol. Soc. Am. 91, 112–127 (2001).

    Google Scholar 

  64. Sudhaus, H. & Jònsson, S. Source model for the 1997 Zirkuh earthquake (M w = 7.2) in Iran derived from JERS and ERS InSAR observations. Geophys. J. Int. 185, 676–692 (2011).

    ADS  Google Scholar 

  65. Ide, S. Complex source processes and the interaction of moderate earthquakes during the earthquake swarm in the Hida-Mountains, Japan, 1998. Tectonophysics 334, 35–54 (2001).

    ADS  Google Scholar 

  66. Miyakoshi, K., Kagawa, T., Sekiguchi, H., Iwata, T. & Irikura, K. Source characterization of inland earthquakes in Japan using source inversion results. In Proc. 12th World Conference on Earthquake Engineering abstr. 1850 (New Zealand Society for Earthquake Engineering, 2000).

  67. Nakahara, H. et al. Broadband source process of the 1998 Iwate prefecture, Japan, earthquake as revealed from inversion analyses of seismic waveforms and envelopes. Bull. Seismol. Soc. Am. 92, 1708–1720 (2002).

    Google Scholar 

  68. Ji, C., Wald, D. J. & Helmberger, D. V. Source description of the 1999 Hector Mine, California, earthquake, part II: complexity of slip history. Bull. Seismol. Soc. Am. 92, 1208–1226 (2002).

    Google Scholar 

  69. Salichon, J., Lundgren, P., Delouis, B. & Giardini, D. Slip history of the 16 October 1999 M w 7.1 Hector Mine earthquake (California) from the inversion of InSAR, GPS, and teleseismic data. Bull. Seismol. Soc. Am. 94, 2015–2027 (2004).

    Google Scholar 

  70. Bouchon, M. et al. Space and time evolution of rupture and faulting during the 1999 Izmit (Turkey) earthquake. Bull. Seismol. Soc. Am. 92, 256–266 (2002).

    Google Scholar 

  71. Çakir, Z. et al. Coseismic and early post-seismic slip associated with the 1999 Izmit earthquake (Turkey), from SAR interferometry and tectonic field observations. Geophys. J. Int. 155, 93–110 (2003).

    ADS  Google Scholar 

  72. Delouis, B., Giardini, D., Lundgren, P. & Salichon, J. Joint inversion of InSAR, GPS, teleseismic, and strong-motion data for the spatial and temporal distribution of earthquake slip: application to the 1999 Izmit mainshock. Bull. Seismol. Soc. Am. 92, 278–299 (2002).

    Google Scholar 

  73. Reilinger, R. E. et al. Coseismic and postseismic fault slip for the 17 August 1999, M = 7.5, Izmit, Turkey earthquake. Science 289, 1519–1524 (2000).

    ADS  CAS  Google Scholar 

  74. Yagi, Y. & Kikuchi, M. Source rupture process of the Kocaeli, Turkey, earthquake of August 17, 1999, obtained by joint inversion of near-field data and teleseismic data. Geophys. Res. Lett. 27, 1969–1972 (2000).

    ADS  Google Scholar 

  75. Copley, A., Avouac, J. P., Hollingsworth, J. & Leprince, S. The 2001 Mw 7.6 Bhuj earthquake, low fault friction, and the crustal support of plate driving forces in India. J. Geophys. Res. 116, B08405 (2011).

    ADS  Google Scholar 

  76. Copley, A. Source models of large earthquakes: Jan/26/2001 (Mw 7.6), Bhuj, India. Caltech Tectonics Observatory http://www.tectonics.caltech.edu/slip_history/2001_Bhuj/index.html (accessed 1 July 2013).

  77. Yagi, Y. A slip model for the Jan 26, 2001 Bhuj (India) earthquake using teleseismic recordings. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2001BHUJIN01YAGI (accessed 18 May 2003).

  78. Asano, K., Iwata, T. & Irikura, K. Estimation of source rupture process and strong ground motion simulation of the 2002 Denali, Alaska, earthquake. Bull. Seismol. Soc. Am. 95, 1701–1715 (2005).

    Google Scholar 

  79. Poiata, N., Miyake, H., Koketsu, K. & Hikima, K. Strong motion and teleseismic waveform inversions for the source process of the 2003 Bam, Iran, earthquake. Bull. Seismol. Soc. Am. 102, 1477–1496 (2012).

    Google Scholar 

  80. Semmane, F., Campillo, M. & Cotton, F. Fault location and source process of the Boumerdes, Algeria, earthquake inferred from geodetic and strong motion data. Geophys. Res. Lett. 32, L01305 (2005).

    ADS  Google Scholar 

  81. Wei, S. Source models of large earthquakes: July/15/2003, Carlsberg Ridge, Mw7.6. Caltech Tectonics Observatory http://www.tectonics.caltech.edu/slip_history/2004_carlsberg-ridge/index.html (accessed 1 July 2013).

  82. Koketsu, K., Hikima, K., Miyazaki, S. & Ide, S. Joint inversion of strong motion and geodetic data for the source process of the 2003 Tokachi-oki, Hokkaido, earthquake. Earth Planets Space 56, 329–334 (2004).

    ADS  Google Scholar 

  83. Tanioka, Y., Hirata, K., Hino, R. & Kanazawa, T. Slip distribution of the 2003 Tokachi-oki earthquake estimated from tsunami waveform inversion. Earth Planets Space 56, 373–376 (2004).

    ADS  Google Scholar 

  84. Yagi, Y. Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data. Earth Planets Space 56, 311–316 (2004).

    ADS  Google Scholar 

  85. Yamanaka, Y. & Kikuchi, M. Source process of the recurrent Tokachi-oki earthquake on September 26, 2003, inferred from teleseismic body waves. Earth Planets Space 55, e21–e24 (2003).

    ADS  Google Scholar 

  86. Wei, S. Source models of large earthquakes: Feb/07/2004 (Mw 7.2), Irian Jaya, Indonesia. Caltech Tectonics Observatory http://www.tectonics.caltech.edu/slip_history/2004_indo-irian_jaya/index.html (accessed 1 July 2013).

  87. Ammon, C. J. et al. Rupture process of the great 2004 Sumatra-Andaman earthquake. Science 308, 1133–1139 (2005).

    ADS  CAS  Google Scholar 

  88. Rhie, J., Dreger, D., Burgmann, R. & Romanowicz, B. Slip of the 2004 Sumatra-Andaman earthquake from joint inversion of long-period global seismic waveforms and GPS static offsets. Bull. Seismol. Soc. Am. 97, S115–S127 (2007).

    Google Scholar 

  89. Shao, G. & Ji, C. Preliminary result of the Aug 16, 2005 Mw 7.19 Honshu earthquake. UCSB http://www.geol.ucsb.edu/faculty/ji/big_earthquakes/2005/08/smooth/honshu.html (accessed 22 August 2013).

  90. Shao, G. & Ji, C. Preliminary result of the Jun 15, 2005 Mw 7.2 northern California earthquake. UCSB http://www.geol.ucsb.edu/faculty/ji/big_earthquakes/2005/06/smooth/northernca.html (accessed 25 September 2013).

  91. Lay, T. et al. The 2006-2007 Kuril Islands great earthquake sequence. J. Geophys. Res. 114, B11308 (2009).

    ADS  Google Scholar 

  92. Sladen, A. Source models of large earthquakes: preliminary result, 11/15/2006 (Mw 8.3), Kuril Islands. Caltech Tectonics Observatory http://www.tectonics.caltech.edu/slip_history/2006_kuril/kuril.html (accessed 1 July 2013).

  93. Yen, Y.-T., Ma, K.-F. & Wen, Y.-Y. Slip partition of the 26 December 2006 Pingtung, Taiwan (M6.9, M6.8) earthquake doublet determined from teleseismic waveforms. Diqiu Kexue Jikan 19, 567–578 (2008).

    Google Scholar 

  94. Ji, C. Rupture process of the 2007 Jan 13 magnitude 8.1 - KURIL Island earthquake (revised). UCSB http://www.geol.ucsb.edu/faculty/ji/big_earthquakes/2007/01/13/kuril.html (accessed 22 August 2013).

  95. Sladen, A. Source models of large earthquakes: preliminary result, 01/13/2007 (Mw 8.1), Kuril Islands. Caltech Tectonics Observatory http://www.tectonics.caltech.edu/slip_history/2007_kuril/kuril.html (accessed 1 July 2013).

  96. Ji, C. & Zeng, Y. Preliminary result of the Sep 12, 2007 Mw 7.9 Kepulauan earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2007PAGAII01JIxx (accessed 14 June 2018).

  97. Sladen, A. & Ozgun Konca, A. Source models of large earthquakes: preliminary result, 09/12/2007 (Mw 7.9), Central Sumatra earthquake. Caltech Tectonics Observatory http://www.tectonics.caltech.edu/slip_history/2007_c_sumatra/c-sumatra.html (accessed 1 July 2013).

  98. Ji, C. Rupture process of the 2007 April 1, magnitude 8.1, Solomon Islands earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2007SOLOMO01JIxx (accessed 14 June 2018).

  99. Béjar-Pizzaro, M. et al. Asperities and barriers on the seismogenic zone in North Chile: state-of-the-art after the 2007 M w 7.7 Tocopilla earthquake inferred by GPS and InSAR data. Geophys. J. Int. 183, 390–406 (2010).

    ADS  Google Scholar 

  100. Sladen, A. Source models of large earthquakes: preliminary result, 11/14/2007 (Mw 7.7), Tocopilla earthquake, Chile. Caltech Tectonics Observatory http://www.tectonics.caltech.edu/slip_history/2007_tocopilla/tocopilla.html (accessed 1 July 2013).

  101. Zeng, Y., Hayes, G. & Ji, C. Preliminary result of the Nov 14, 2007 Mw 7.7 Antofagasto, Chile earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2007TOCOPI01ZENG (accessed 14 June 2018).

  102. Sladen, A. Source models of large earthquakes: preliminary result, 11/16/2008 (Mw 7.3), Sulawesi. Caltech Tectonics Observatory http://www.tectonics.caltech.edu/slip_history/2008_sulawesi/sulawesi.html (accessed 1 July 2013).

  103. Ji, C. & Hayes, G. Preliminary result of the May 12, 2008 Mw 7.9 eastern Sichuan, China earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2008WENCHU01JIxx (accessed 18 June 2018).

  104. Sladen, A. Source models of large earthquakes: preliminary result, 05/12/2008 (Mw 7.9), East Sichuan. Caltech Tectonics Observatory http://www.tectonics.caltech.edu/slip_history/2008_e_sichuan/e_sichuan.html (accessed 1 July 2013).

  105. Yagi, Y., Nishimura, N. & Kasahara, A. Source process of the 12 May 2008 Wenchuan, China, earthquake determined by waveform inversion of teleseismic body waves with a data covariance matrix. Earth Planets Space 64, e13–e16 (2012).

    ADS  Google Scholar 

  106. Fielding, E. J. et al. Kinematic fault slip evolution source models of the 2008 M7.9 Wenchuan earthquake in China from SAR interferometry, GPS and teleseismic analysis and implications for Longmen Shan tectonics. Geophys. J. Int. 194, 1138–1166 (2013).

    ADS  Google Scholar 

  107. Hayes, G. Preliminary result of the July 15, 2009 Mw 7.6 Fiordland earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2009FIORDL01HAYE (accessed 14 June 2018).

  108. Hayes, G. Preliminary result of the August 3, 2009 Mw 6.9 Gulf of California earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2009GULFOF01HAYE (accessed 14 June 2018).

  109. Cirella, A., Piatanesi, A., Tinti, E., Chini, M. & Cocco, M. Complexity of the rupture process during the 2009 L’Aquila, Italy, earthquake. Geophys. J. Int. 190, 607–621 (2012).

    ADS  Google Scholar 

  110. Gualandi, A., Serpelloni, E. & Belardinelli, M. E. s2009LAQUIL01GUAL. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2009LAQUIL01GUAL (accessed June 2018).

  111. Hayes, G. & Ji, C. Preliminary result of the May 28, 2009 Mw 7.3 earthquake offshore Honduras. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2009OFFSHO01HAYE (accessed 14 June 2018).

  112. Hayes, G. A preliminary result of the Sep 30, 2009 Mw 7.6 southern Sumatra earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2009PADANG01HAYE (accessed 19 June 2018).

  113. Sladen, A. Source models of large earthquakes: preliminary result, 09/30/2009 (Mw 7.6), Padang, Indonesia. Caltech Tectonics Observatory http://www.tectonics.caltech.edu/slip_history/2009_padang/padang.html (accessed 1 July 2013).

  114. Hayes, G. Preliminary result of the Sep 29, 2009 Mw 8.0 Samoa earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2009SAMOAx01HAYE (accessed 19 June 2018).

  115. Sladen, A. Source models of large earthquakes: preliminary result, 10/07/2009 (Mw 7.6), Vanuatu. Caltech Tectonics Observatory http://www.tectonics.caltech.edu/slip_history/2009_vanuatu/index.html (accessed 1 July 2013).

  116. Wei, S. et al. Superficial simplicity of the 2010 El Mayor–Cucapah earthquake of Baja California in Mexico. Nat. Geosci. 4, 615–618 (2011).

    ADS  CAS  Google Scholar 

  117. Calais, E. et al. Transpressional rupture of an unmapped fault during the 2010 Haiti earthquake. Nat. Geosci. 3, 794–799 (2010).

    ADS  CAS  Google Scholar 

  118. Hayes, G. P. et al. Complex rupture during the 12 January 2010 Haiti earthquake. Nat. Geosci. 3, 800–805 (2010).

    ADS  CAS  Google Scholar 

  119. Sladen, A. Source models of large earthquakes: preliminary result, 01/12/2010 (Mw 7.0), Haiti. Caltech Tectonics Observatory http://www.tectonics.caltech.edu/slip_history/2010_haiti/index.html (accessed 1 July 2013).

  120. Hayes, G. Updated result of the Jan 12, 2010 Mw 7.0 Haiti earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2010HAITIx02HAYE (accessed 20 June 2018).

  121. Hayes, G. Updated result of the Feb 27, 2010 Mw 8.8 Maule, Chile earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2010MAULEC01HAYE (accessed 19 June 2018).

  122. Hayes, G. Updated result of the Apr 6, 2010 northern Sumatra earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2010NORTHE01HAYE (accessed 19 June 2018).

  123. Hayes, G. Preliminary result of the Dec 25, 2010 Mw 7.3 Vanuatu region earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2010VANUAT01HAYE (accessed 19 June 2018).

  124. Hayes, G. Preliminary result of the Oct 21, 2011 Mw 7.4 Kermadec Islands region earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2011KERMAD02HAYE (accessed 3 June 2018).

  125. Hayes, G. Preliminary result of the July 6, 2011 Mw 7.6 Kermadec Islands region earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2011KERMAD01HAYE (accessed 1 June 2018).

  126. Hayes, G. Updated result of the Mar 9, 2011 Mw 7.3 earthquake offshore Honshu, Japan (Tohoku EQ foreshock). eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2011OFFSHO01HAYE (accessed 1 June 2018).

  127. Fujii, Y., Satake, K., Sakai, S., Shinohara, M. & Kanazawa, T. Tsunami source of the 2011 off the Pacific coast of Tohoku earthquake. Earth Planets Space 63, 815–820 (2011).

    ADS  Google Scholar 

  128. Satake, K., Fujii, Y., Harada, T. & Namegaya, Y. Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred from tsunami waveform data. Bull. Seismol. Soc. Am. 103, 1473–1492 (2013).

    Google Scholar 

  129. Yue, H. & Lay, T. Source rupture models for the M w 9.0 2011 Tohoku earthquake from joint inversions of high-rate geodetic and seismic data. Bull. Seismol. Soc. Am. 103, 1242–1255 (2013).

    Google Scholar 

  130. Hayes, G. Updated result of the Oct 23, 2011 Mw 7.1 eastern Turkey earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2011VANTUR01HAYE (accessed 20 June 2018).

  131. Shao, G. & Ji, C. Preliminary result of the Oct 23, 2011 Mw 7.13 Turkey earthquake. UCSB http://www.geol.ucsb.edu/faculty/ji/big_earthquakes/2011/10/23/turkey.html (accessed 22 August 2013).

  132. Hayes, G. Preliminary result of the Aug 20, 2011 Mw 7.1 Vanuatu earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2011VANUAT01HAYE (accessed 1 June 2018).

  133. Wei, S. et al. Complementary slip distributions of the largest earthquakes in the 2012 Brawley swarm, Imperial Valley, California. Geophys. Res. Lett. 40, 847–852 (2013).

    ADS  Google Scholar 

  134. Hayes, G. Preliminary result of the Aug 31, 2012 Mw 7.6 earthquake east of Sulangan, Philippines. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2012EASTOF01HAYE (accessed 21 June 2018).

  135. Lay, T. et al. The October 28, 2012 M w 7.8 Haida Gwaii underthrusting earthquake and tsunami: slip partitioning along the Queen Charlotte fault transpressional plate boundary. Earth Planet. Sci. Lett. 375, 57–70 (2013).

    ADS  CAS  Google Scholar 

  136. Shao, G. & Ji, C. Preliminary result of the Oct 28, 2012 Mw 7.72 Canada earthquake. UCSB http://www.geol.ucsb.edu/faculty/ji/big_earthquakes/2012/10/canada.html (accessed 20 August 2013).

  137. Wei, S. Source models of large earthquakes: Oct./28/2012 (Mw 7.8), Masset, Canada. Caltech Tectonics Observatory http://www.tectonics.caltech.edu/slip_history/2012_Masset/index.html (accessed 1 July 2013).

  138. Hayes, G. Preliminary result of the Mar 20, 2012 Mw 7.4 Oaxaca, Mexico earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2012OAXACA01HAYE (accessed 20 June 2018).

  139. Wei, S. Source models of large earthquakes: March/20/2012 (Mw 7.4), OAXACA, Mexico. Caltech Tectonics Observatory http://www.tectonics.caltech.edu/slip_history/2012_Mexico/index.html (accessed 1 July 2013).

  140. Hayes, G. Preliminary result of the Jan 10, 2012 Mw 7.2 off the west coast of northern Sumatra, Indonesia earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2012SUMATR03HAYE (accessed 14 June 2018).

  141. Shao, G., Li, X. & Ji, C. Preliminary result of the Apr 11, 2012 Mw 8.64 Sumatra earthquake. UCSB http://www.geol.ucsb.edu/faculty/ji/big_earthquakes/2012/04/10/sumatra.html (accessed 19 August 2013).

  142. Hayes, G. Preliminary result of the Apr 11, 2012 Mw 8.6 earthquake off the west coast of northern Sumatra. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2012SUMATR01HAYE (accessed 19 June 2018).

  143. Hayes, G. Preliminary result of the Apr 11, 2012 Mw 8.6 earthquake off the west coast of northern Sumatra. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2012SUMATR02HAYE (accessed 19 June 2018).

  144. Yamanaka, Y. & Kikuchi, M. Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data. J. Geophys. Res. 109, B07307 (2004).

    ADS  Google Scholar 

  145. Hartzell, S. & Mendoza, C. Application of an iterative least-squares wave-form inversion of strong-motion and teleseismic records to the 1978 Tabas, Iran, earthquake. Bull. Seismol. Soc. Am. 81, 305–331 (1991).

    Google Scholar 

  146. Archuleta, R. J. A faulting model for the 1979 Imperial Valley earthquake. J. Geophys. Res. 89, 4559–4585 (1984).

    ADS  Google Scholar 

  147. Hartzell, S. H. & Heaton, T. H. Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bull. Seismol. Soc. Am. 73, 1553–1583 (1983).

    Google Scholar 

  148. Olson, A. H. & Apsel, R. J. Finite faults and inverse theory with applications to the 1979 Imperial Valley earthquake. Bull. Seismol. Soc. Am. 72, 1969–2001 (1982).

    Google Scholar 

  149. Mendoza, C. & Hartzell, S. H. Slip distribution of the 19 September 1985 Michoacan, Mexico, earthquake: near-source and teleseismic constraints. Bull. Seismol. Soc. Am. 79, 655–669 (1989).

    Google Scholar 

  150. Wald, D. J. Strong motion and broad-band teleseismic analysis of the 1991 Sierra-Madre, California, earthquake. J. Geophys. Res. 97, 11033–11046 (1992).

    ADS  Google Scholar 

  151. Silva, W. et al. A slip model for the Little Skull Mountain earthquake of June 29, 1992. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s1992LITTLE01SILV (accessed June 2018).

  152. Cho, I. & Nakanishi, I. Investigation of the three-dimensional fault geometry ruptured by the 1995 Hyogo-Ken Nanbu earthquake using strong-motion and geodetic data. Bull. Seismol. Soc. Am. 90, 450–467 (2000).

    Google Scholar 

  153. Horikawa, H., Hirahara, K., Umeda, Y., Hashimoto, M. & Kusano, F. Simultaneous inversion of geodetic and strong-motion data for the source process of the Hyogo-ken Nanbu, Japan, earthquake. J. Phys. Earth 44, 455–471 (1996).

    Google Scholar 

  154. Ide, S., Takeo, M. & Yoshida, Y. Source process of the 1995 Kobe earthquake: determination of spatio-temporal slip distribution by Bayesian modeling. Bull. Seismol. Soc. Am. 86, 547–566 (1996).

    Google Scholar 

  155. Koketsu, K., Yoshida, S. & Higashihara, H. A fault model of the 1995 Kobe earthquake derived from the GPS data on the Akashi Kaikyo Bridge and other datasets. Earth Planets Space 50, 803–811 (1998).

    ADS  Google Scholar 

  156. Sekiguchi, H., Irikura, K. & Iwata, T. Fault geometry at the rupture termination of the 1995 Hyogo-ken Nanbu earthquake. Bull. Seismol. Soc. Am. 90, 117–133 (2000).

    Google Scholar 

  157. Wald, D. J. Slip history of the 1995 Kobe, Japan, earthquake determined from strong motion, teleseismic, and geodetic data. J. Phys. Earth 44, 489–503 (1996).

    Google Scholar 

  158. Sekiguchi, H., Irikura, K. & Iwata, T. Source inversion for estimating the continuous slip distribution on a fault introduction of Green’s functions convolved with a correction function to give moving dislocation effects in subfaults. Geophys. J. Int. 150, 377–391 (2002).

    ADS  Google Scholar 

  159. Chi, W. C., Dreger, D. & Kaverina, A. Finite-source modeling of the 1999 Taiwan (Chi-Chi) earthquake derived from a dense strong-motion network. Bull. Seismol. Soc. Am. 91, 1144–1157 (2004).

    Google Scholar 

  160. Jonsson, S., Zebker, H., Segall, P. & Amelung, F. Fault slip distribution of the 1999 M w 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements. Bull. Seismol. Soc. Am. 92, 1377–1389 (2002).

    Google Scholar 

  161. Zhang, W., Iwata, T., Irikura, K., Pitarka, A. & Sekiguchi, H. Dynamic rupture process of the 1999 Chi-Chi, Taiwan, earthquake. Geophys. Res. Lett. 31, L10605 (2004).

    ADS  Google Scholar 

  162. Wu, C. J., Takeo, M. & Ide, S. Source process of the Chi-Chi earthquake: a joint inversion of strong motion data and global positioning system data with a multifault model. Bull. Seismol. Soc. Am. 91, 1128–1143 (2004).

    Google Scholar 

  163. Zeng, Y. H. & Chen, C. H. Fault rupture process of the 20 September 1999 Chi-Chi, Taiwan, earthquake. Bull. Seismol. Soc. Am. 91, 1088–1098 (2004).

    Google Scholar 

  164. Ma, K. F., Mori, J., Lee, S. J. & Yu, S. B. Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan, earthquake. Bull. Seismol. Soc. Am. 91, 1069–1087 (2004).

    Google Scholar 

  165. Birgören, G., Sekiguchi, H. & Irikura, K. Rupture model of the 1999 Duzce, Turkey, earthquake deduced from high and low frequency strong motion data. Geophys. Res. Lett. 31, L05610 (2004).

    ADS  Google Scholar 

  166. Delouis, B., Lundgren, P. & Giardini, D. Slip distributions of the 1999 Décze (Mw 7.2) and Izmit (Mw 7.6) earthquakes on the North Anatolian Fault (Turkey): a combined analysis, internal report. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s1999DUZCET01DELO (accessed 1 April 2018).

  167. Hernandez, B. et al. Rupture history of September 30, 1999 intraplate earthquake of Oaxaca, Mexico (M w 7.5) from inversion of strong-motion data. Geophys. Res. Lett. 28, 363–366 (2001).

    ADS  Google Scholar 

  168. Iwata, T., Sekiguchi, H., Matsumoto, Y., Miyake, H. & Irikura, K. Source process of the 2000 western Tottori Prefecture earthquake and near-source strong ground motion. In 2000 Fall Meeting of the Seismological Society of Japan (Seismological Society of Japan, 2000).

  169. Sekiguchi, H., Iwata, T., Sugiyama, Y., Fusejima, Y. & Horikawa, H. Faulting process and condition for its occurrence of 2000 Tottori-ken Seibu Earthquake. In 2001 Japan Earth and Planetary Science Joint Meeting abstr. S3-006 (2001).

  170. Kakehi, Y. Analysis of the 2001 Geiyo, Japan, earthquake using high-density strong ground motion data: detailed rupture process of a slab earthquake in a medium with a large velocity contrast. J. Geophys. Res. 109, B08306 (2004).

    ADS  Google Scholar 

  171. Yagi, Y., Mikurno, T., Pacheco, J. & Reyes, G. Source rupture process of the Tecoman, Colima, Mexico earthquake of 22 January 2003, determined by joint inversion of teleseismic body-wave and near-source data. Bull. Seismol. Soc. Am. 94, 1795–1807 (2004).

    Google Scholar 

  172. Custódio, S., Liu, P. C. & Archuleta, R. J. The 2004 M w 6.0 Parkfield, California, earthquake: inversion of near-source ground motion using multiple data sets. Geophys. Res. Lett. 32, L23312 (2005).

    ADS  Google Scholar 

  173. Dreger, D. S., Gee, L., Lombard, P., Murray, M. H. & Romanowicz, B. Rapid finite-source analysis and near-fault strong ground motions: application to the 2003 M w 6.5 San Simeon and 2004 M w 6.0 Parkfield earthquakes. Seismol. Res. Lett. 76, 40–48 (2005).

    Google Scholar 

  174. Ji, C. Source models of large earthquakes: slip history the 2004 (Mw 5.9) Parkfield earthquake (single-plane model). Caltech Tectonics Observatory http://www.tectonics.caltech.edu/slip_history/2004_ca/parkfield2.html (accessed 1 July 2013).

  175. Ozgun Konca, A. Source models of large earthquakes: preliminary result, 06/10/08 (Mw 7.6), Kashmir earthquake. Caltech Tectonics Observatory http://www.tectonics.caltech.edu/slip_history/2005_kashmir/kashmir.html (accessed 1 July 2013).

  176. Yagi, Y. & Fukahata, Y. Rupture process of the 2011 Tohoku-oki earthquake and absolute elastic strain release. Geophys. Res. Lett. 38, L19307 (2011).

    ADS  Google Scholar 

  177. Ji, C. Preliminary result of the 2006 July 17 magnitude 7.7 - south of Java, Indonesia earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2006SOUTHE01JIxx (accessed 21 June 2018).

  178. Ozgun Konca, A. Source models of large earthquakes: preliminary result, 06/07/17 (Mw 7.9), southern Java earthquake. Caltech Tectonics Observatory http://www.tectonics.caltech.edu/slip_history/2006_s_java/s_java.html (accessed 1 July 2013).

  179. Ji, C. & Zeng, Y. Preliminary result of the Aug 15, 2007 Mw 8.0 coast of central Peru earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2007PISCOP01JIxx (accessed 21 June 2018).

  180. Ozgun Konca, A. Source models of large earthquakes: preliminary result, 07/08/15 (Mw 8.0), Peru earthquake. Caltech Tectonics Observatory http://www.tectonics.caltech.edu/slip_history/2007_peru/pisco.html (accessed 1 July 2013).

  181. Hayes, G. & Ji, C. Preliminary result of the Jun 13, 2008 Mw 6.8 Honshu earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2008IWATEx01HAYE (accessed 28 June 2018).

  182. Hayes, G. Preliminary result of the Sep 29, 2008 Mw 7.0 Kermedac Islands earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2008KERMED01HAYE (accessed 19 June 2013).

  183. Hayes, G. & Ji, C. Preliminary result of the Feb 20, 2008 Mw 7.4 Simeulue earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2008SIMEUL01HAYE (accessed 20 June 2018).

  184. Sladen, A. Source models of large earthquakes: preliminary result 02/20/2008 (Mw 7.4), Simeulue earthquake, Indonesia. Caltech Tectonics Observatory http://www.tectonics.caltech.edu/slip_history/2008_n_sumatra/simeulue.html (accessed 1 July 2013).

  185. Hayes, G. Preliminary result of the Jan 3, 2009 Mw 7.6 Papua earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2009PAPUAx01HAYE (accessed 19 June 2018).

  186. Hayes, G. Preliminary result of the Dec 21, 2010 Mw 7.4 Bonin Islands earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2010BONINI01HAYE (accessed 19 June 2018).

  187. Hayes, G. Preliminary result of the May 9, 2010 Mw 7.2 northern Sumatra earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2010NORTHE02HAYE (accessed 19 June 2018).

  188. Hayes, G. Preliminary result of the Sep 5, 2012 Mw 7.6 Costa Rica earthquake. eQuake-RC Finite-Source Rupture Model Database http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2012COSTAR01HAYE (accessed 21 June 2018).

  189. Yue, H. et al. The 5 September 2012 Nicoya, Costa Rica M w 7.6 earthquake rupture process from joint inversion of high-rate GPS, strong-motion, and teleseismic P wave data and its relationship to adjacent plate boundary interface properties. J. Geophys. Res. 118, 5453–5466 (2013).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Harvard University and Google. The computations in this paper were run on the Odyssey cluster supported by the FAS Division of Science, Research Computing Group at Harvard University.

Reviewer information

Nature thanks D. Trugman and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived the idea for this paper; P.M.R.D. and B.J.M. implemented the analysis and wrote the paper.

Corresponding author

Correspondence to Phoebe M. R. DeVries.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Comparisons of spatial patterns of stress metrics.

ad, Analogous to Fig. 2e–h, but for an idealized thrust earthquake. The fault plane dips 45° to the north and the red line is the trace of the fault at the surface. Depth shown is 10 km.

Extended Data Fig. 2 Mainshock–aftershock examples.

ah, Analogous to Fig. 1a–h, using the same sign conventions for Coulomb failure stress change, but with results based on a training dataset (Supplementary Table 1) that excludes grid cells more than 5 km below the maximum depth of each slip distribution.

Extended Data Fig. 3 Comparisons of performance.

ah, Analogous to Fig. 2a–h, using training and test datasets (Supplementary Table 1) that exclude grid cells more than 5 km below the maximum depth of each slip distribution.

Extended Data Fig. 4 ROC curves associated with realization 6 of the datasets.

ad, Curves incorporate grid cells down to a depth of 50 km. eh, Curves including grid cells down to 5 km beyond the maximum depth of each slip distribution. Thus, the neural network in d is trained and evaluated on a version of dataset realization 6 (Supplementary Table 2) that incorporates grid cells down to a depth of 50 km, whereas that in h is trained and evaluated on the same realizations of slip distributions, but incorporating only grid cells down to 5 km below each slip distribution.

Extended Data Fig. 5 Forward predictions of the neural networks from each realization of the training dataset, incorporating all grid cells down to 50 km.

Each panel is analogous to Fig. 2h, but uses one of ten distinct neural networks trained on one of ten different realizations of the training dataset (Supplementary Table 2). See Methods for further discussion.

Extended Data Fig. 6 Forward predictions of the neural networks from each realization of the training dataset, incorporating grid cells down to 5 km beyond the depth of each slip distribution.

Each panel is analogous to Fig. 2h, but uses one of ten distinct neural networks trained on one of ten different realizations of the training dataset (Supplementary Table 2). See Methods for further discussion.

Extended Data Table 1 Comparison of physical metrics to the neural network for an idealized case
Extended Data Table 2 Summary of results for ten realizations of the training and test datasets

Supplementary information

Supplementary Table 1

This file contains a list of slip distributions and references randomly assigned to testing and training data sets (from http://equake-rc.info/SRCMOD/references/). Excel spreadsheet.

Supplementary Table 2

This file contains a list of slip distributions randomly assigned to testing and training data set realizations (listed by the SRCMOD filename identifiers; for complete references please see Supplementary Information Table 1). Excel spreadsheet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeVries, P.M.R., Viégas, F., Wattenberg, M. et al. Deep learning of aftershock patterns following large earthquakes. Nature 560, 632–634 (2018). https://doi.org/10.1038/s41586-018-0438-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0438-y

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing