Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Probing high-momentum protons and neutrons in neutron-rich nuclei


The atomic nucleus is one of the densest and most complex quantum-mechanical systems in nature. Nuclei account for nearly all the mass of the visible Universe. The properties of individual nucleons (protons and neutrons) in nuclei can be probed by scattering a high-energy particle from the nucleus and detecting this particle after it scatters, often also detecting an additional knocked-out proton. Analysis of electron- and proton-scattering experiments suggests that some nucleons in nuclei form close-proximity neutron–proton pairs1,2,3,4,5,6,7,8,9,10,11,12 with high nucleon momentum, greater than the nuclear Fermi momentum. However, how excess neutrons in neutron-rich nuclei form such close-proximity pairs remains unclear. Here we measure protons and, for the first time, neutrons knocked out of medium-to-heavy nuclei by high-energy electrons and show that the fraction of high-momentum protons increases markedly with the neutron excess in the nucleus, whereas the fraction of high-momentum neutrons decreases slightly. This effect is surprising because in the classical nuclear shell model, protons and neutrons obey Fermi statistics, have little correlation and mostly fill independent energy shells. These high-momentum nucleons in neutron-rich nuclei are important for understanding nuclear parton distribution functions (the partial momentum distribution of the constituents of the nucleon) and changes in the quark distributions of nucleons bound in nuclei (the EMC effect)1,13,14. They are also relevant for the interpretation of neutrino-oscillation measurements15 and understanding of neutron-rich systems such as neutron stars3,16.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: CLAS spectrometer.
Fig. 2: Relative abundances of high- and low-initial-momentum neutrons and protons.
Fig. 3: Relative high-momentum fractions for neutrons and protons.


  1. 1.

    Hen, O., Miller, G. A., Piasetzky, E. & Weinstein, L. B. Nucleon–nucleon correlations, short-lived excitations, and the quarks within. Rev. Mod. Phys. 89, 045002 (2017).

    ADS  Article  Google Scholar 

  2. 2.

    degli Atti, C.C. In-medium short-range dynamics of nucleons: recent theoretical and experimental advances. Phys. Rep. 590, 1–85 (2015).

    ADS  MathSciNet  Article  MATH  CAS  Google Scholar 

  3. 3.

    Frankfurt, L., Sargsian, M. & Strikman, M. Recent observation of short-range nucleon correlations in nuclei and their implications for the structure of nuclei and neutron stars. Int. J. Mod. Phys. A 23, 2991–3055 (2008).

    ADS  Article  MATH  CAS  Google Scholar 

  4. 4.

    Subedi, R. et al. Probing cold dense nuclear matter. Science 320, 1476–1478 (2008).

    ADS  Article  PubMed  CAS  Google Scholar 

  5. 5.

    CLAS Collaboration. Momentum sharing in imbalanced Fermi systems. Science 346, 614 – 617 (2014).

    Article  CAS  Google Scholar 

  6. 6.

    Korover, I. et al. Probing the repulsive core of the nucleon–nucleon interaction via the 4He(e,epN) triple-coincidence reaction. Phys. Rev. Lett. 113, 022501 (2014).

    ADS  Article  PubMed  CAS  Google Scholar 

  7. 7.

    Piasetzky, E., Sargsian, M., Frankfurt, L., Strikman, M. & Watson, J. W. Evidence for strong dominance of proton–neutron correlations in nuclei. Phys. Rev. Lett. 97, 162504 (2006).

    ADS  Article  PubMed  CAS  Google Scholar 

  8. 8.

    Tang, A. et al. np short-range correlations from (p, 2p + n) measurements. Phys. Rev. Lett. 90, 042301 (2003).

    ADS  Article  PubMed  CAS  Google Scholar 

  9. 9.

    Fomin, N. et al., New measurements of high-momentum nucleons and short-range structures in nuclei. Phys. Rev. Lett. 108, 092502 (2012).

    ADS  Article  PubMed  CAS  Google Scholar 

  10. 10.

    CLAS Collaboration. Measurement of two- and three-nucleon short-range correlation probabilities in nuclei. Phys. Rev. Lett. 96, 082501 (2006).

    Article  CAS  Google Scholar 

  11. 11.

    Frankfurt, L. L., Strikman, M. I., Day, D. B. & Sargsyan, M. Evidence for short-range correlations from high Q 2 (e,e′) reactions. Phys. Rev. C 48, 2451 (1993).

    ADS  Article  CAS  Google Scholar 

  12. 12.

    Arrington, J., Higinbotham, D.W., Rosner, G. & Sargsian, M. Hard probes of short-range nucleon–nucleon correlations. Prog. Part. Nucl. Phys. 67, 898–938 (2012).

    ADS  Article  CAS  Google Scholar 

  13. 13.

    Weinstein, L. B., Piasetzky, E., Higinbotham, D. W., Gomez, J., Hen, O. & Shneor, R. Short range correlations and the EMC effect. Phys. Rev. Lett. 106, 052301 (2011).

    ADS  Article  PubMed  CAS  Google Scholar 

  14. 14.

    Hen, O., Piasetzky, E. & Weinstein, L.B. New data strengthen the connection between short range correlations and the EMC effect. Phys. Rev. C 85, 047301 (2012).

    ADS  Article  CAS  Google Scholar 

  15. 15.

    Gallagher, H., Garvey, G. & Zeller, G. P. Neutrino–nucleus interactions. Annu. Rev. Nucl. Part. Sci. 61, 355–378 (2011).

    ADS  Article  CAS  Google Scholar 

  16. 16.

    Li, B. A., Cai, B. J., Chen, L.W. & Xu, J. Nucleon effective masses in neutron-rich matter. Prog. Part. Nucl. Phys. 99, 29–119 (2018).

    ADS  Article  CAS  Google Scholar 

  17. 17.

    Caurier, E., Martínez-Pinedo, G., Nowacki, F., Poves, A. & Zuker, A. P. The shell model as a unified view of nuclear structure. Rev. Mod. Phys. 77, 427–488 (2005).

    ADS  Article  CAS  Google Scholar 

  18. 18.

    Kelly, J. J. Nucleon knockout by intermediate-energy electrons. Adv. Nucl. Phys. 23, 75–294 (1996).

    Article  CAS  Google Scholar 

  19. 19.

    Dickhoff, W. H. & Barbieri, C. Self-consistent Green’s function method for nuclei and nuclear matter. Prog. Part. Nucl. Phys. 52, 377–496 (2004).

    ADS  Article  CAS  Google Scholar 

  20. 20.

    Carlson, J. et al., Quantum Monte Carlo methods for nuclear physics. Rev. Mod. Phys. 87, 1067–1118 (2015).

    ADS  MathSciNet  Article  CAS  Google Scholar 

  21. 21.

    Frankfurt, L. L. & Strikman, M. I. High-energy phenomena, short-range nuclear structure and QCD. Phys. Rep. 76, 215–347 (1981).

    ADS  Article  CAS  Google Scholar 

  22. 22.

    Bogner, S. K. & Roscher, D. High-momentum tails from low-momentum effective theories. Phys. Rev. C 86, 064304 (2012).

    ADS  Article  CAS  Google Scholar 

  23. 23.

    More, S. N., Bogner, S. K. & Furnstahl, R. J. Scale dependence of deuteron electrodisintegration. Phys. Rev. C 96, 054004 (2017).

    ADS  Article  Google Scholar 

  24. 24.

    Mecking, B. A. et al. The CEBAF large acceptance spectrometer (CLAS). Nucl. Instrum. Methods A 503, 513–553 (2003).

    ADS  Article  CAS  Google Scholar 

  25. 25.

    Wiringa, R. B., Schiavilla, R., Pieper, S. C. & Carlson, J. Nucleon and nucleon-pair momentum distributions in A≤12 nuclei. Phys. Rev. C 89, 024305 (2014).

    ADS  Article  CAS  Google Scholar 

  26. 26.

    Sargsian, M.M. New properties of the high-momentum distribution of nucleons in asymmetric nuclei. Phys. Rev. C 89, 034305 (2014).

    ADS  Article  CAS  Google Scholar 

  27. 27.

    Ryckebusch, J., Vanhalst, M. & Cosyn, W. Stylized features of single-nucleon momentum distributions. J. Phys. G 42, 055104 (2015).

    ADS  Article  CAS  Google Scholar 

  28. 28.

    Rios, A., Polls, A. & Dickhoff, W. H. Depletion of the nuclear Fermi sea. Phys. Rev. C 79, 064308 (2009).

    ADS  Article  CAS  Google Scholar 

  29. 29.

    Kortelainen, M. and Suhonen, J. Nuclear matrix elements of 0νββ decay with improved short-range correlations. Phys. Rev. C 76, 024315 (2007).

    ADS  Article  CAS  Google Scholar 

  30. 30.

    Frankfurt, L. L., Sargsian, M. M. & Strikman, M. I. Feynman graphs and generalized eikonal approach to high energy knock-out processes. Phys. Rev. C 56, 1124 (1997).

    ADS  Article  CAS  Google Scholar 

  31. 31.

    Colle, C., Cosyn, W. & Ryckebusch, J. Final-state interactions in two-nucleon knockout reactions. Phys. Rev. C 93, 034608 (2016).

    ADS  Article  CAS  Google Scholar 

  32. 32.

    Colle, C. et al. Extracting the mass dependence and quantum numbers of short-range correlated pairs from A(e,ep) and A(e, epp) scattering. Phys. Rev. C 92, 024604 (2015).

    ADS  Article  CAS  Google Scholar 

  33. 33.

    Dutta, D., Hafidi, K. & Strikman, M. Color transparency: past, present and future. Prog. Part. Nucl. Phys. 69, 1–27 (2013).

    ADS  Article  CAS  Google Scholar 

  34. 34.

    CLAS Collaboration. Measurement of transparency ratios for protons from short-range correlated pairs. Phys. Lett. B 722, 63–68 (2013).

    ADS  Article  CAS  Google Scholar 

  35. 35.

    Shneor, R. et al., Investigation of proton–proton short-range correlations via the 12C(e,epp) reaction. Phys. Rev. Lett. 99, 072501 (2007).

    ADS  Article  PubMed  CAS  Google Scholar 

Download references


This work was supported by the US Department of Energy (DOE), contract number DEAC05-06OR23177, under which Jefferson Science Associates, LLC, operates the Thomas Jefferson National Accelerator Facility; by the National Science Foundation, the Israel Science Foundation; the Chilean Comisión Nacional de Investigación Científica y Tecnológica; the French Centre National de la Recherche Scientifique and Commissariat a l’Energie Atomique; the French–American Cultural Exchange; the Italian Istituto Nazionale di Fisica Nucleare; the National Research Foundation of Korea; and the UK Science and Technology Facilities Council.

Reviewer information

Nature thanks T. Aumann, D. Phillips and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information




The CEBAF large acceptance spectrometer was designed and constructed by the CLAS Collaboration and Jefferson Laboratory. Data processing and calibration, Monte Carlo simulations of the detector and data analyses were performed by a large number of CLAS Collaboration members, who also discussed and approved the scientific results. The analysis presented here was performed by M. Duer with input from O. Hen, E. Piasetzky and L. B. Weinstein and reviewed by the CLAS Collaboration.

Corresponding author

Correspondence to O. Hen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1–31, Supplementary Tables 1–11 and Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

The CLAS Collaboration., Duer, M., Hen, O. et al. Probing high-momentum protons and neutrons in neutron-rich nuclei. Nature 560, 617–621 (2018).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing