Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Oscillating features in the electromagnetic structure of the neutron

Abstract

The complicated structure of the neutron cannot be calculated using first-principles calculations due to the large colour charge of quarks and the self-interaction of gluons. Its simplest structure observables are the electromagnetic form factors1, which probe our understanding of the strong interaction. Until now, a small amount of data has been available for the determination of the neutron structure from the time-like kinematical range. Here we present measurements of the Born cross section of electron–positron annihilation reactions into a neutron and anti-neutron pair, and determine the neutron’s effective form factor. The data were recorded with the BESIII experiment at centre-of-mass energies between 2.00 and 3.08 GeV using an integrated luminosity of 647.9 pb−1. Our results improve the statistics on the neutron form factor by more than a factor of 60 over previous measurements, demonstrating that the neutron form factor data from annihilation in the time-like regime is on par with that from electron scattering experiments. The effective form factor of the neutron shows a periodic behaviour, similar to earlier observations of the proton form factor. Future works—both theoretical and experimental—will help illuminate the origin of this oscillation of the electromagnetic structure observables of the nucleon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Signal-process reaction and schematic of the response within the BESIII detector.
Fig. 2: Results for the Born cross section σB and corresponding form factor G of the neutron.
Fig. 3: Results for the Rnp ratio and form factor G deviation from the dipole law with respect to \(\sqrt{s}\).

Similar content being viewed by others

Data availability

Source data are provided with this paper. The raw data used for the plots within this paper and other findings of this study are archived in the Institute of High Energy Physics mass storage silo and are available from the corresponding author upon reasonable request.

Code availability

All algorithms used for data analysis and simulation are archived by the authors and are available on request.

References

  1. Lomon, E. L. & Pacetti, S. Timelike and spacelike electromagnetic form factors of nucleons, a unified description. Phys. Rev. D 85, 113004 (2012); erratum 86, 039901 (2012).

    Article  ADS  Google Scholar 

  2. Ashman, J. et al. A measurement of the spin asymmetry and determination of the structure function g1 in deep inelastic muon-proton scattering. Phys. Lett. B 206, 364–370 (1988).

    Article  ADS  Google Scholar 

  3. Ji, X. D. A QCD analysis of the mass structure of the nucleon. Phys. Rev. Lett. 74, 1071–1074 (1995).

    Article  ADS  Google Scholar 

  4. Bernauer, J. C. et al. High-precision determination of the electric and magnetic form factors of the proton. Phys. Rev. Lett. 105, 242001 (2010).

    Article  ADS  Google Scholar 

  5. Pohl, R. et al. The size of the proton. Nature 466, 213–216 (2010).

    Article  ADS  Google Scholar 

  6. Xiong, W. et al. A small proton charge radius from an electron–proton scattering experiment. Nature 575, 147–150 (2019).

    Article  ADS  Google Scholar 

  7. Miller, G. A. Charge density of the neutron and proton. Phys. Rev. Lett. 99, 112001 (2007).

    Article  ADS  Google Scholar 

  8. Shintani, E., Ishikawa, K. I., Kuramashi, Y., Sasaki, S. & Yamazaki, T. Nucleon form factors and root-mean-square radii on a (10.8 fm)4 lattice at the physical point. Phys. Rev. D 99, 014510 (2019); erratum 102, 019902 (2020).

    Article  ADS  Google Scholar 

  9. Biagini, M. E., Cugusi, L. & Pasqualucci, E. U-spin considerations to guess the unknown time-like neutron form factors. Z. Phys. C 52, 631–634 (1991).

    Article  ADS  Google Scholar 

  10. Antonelli, A. The first measurement of the neutron electromagnetic form factors in the timelike region. Nucl. Phys. B 517, 3–35 (1998).

    Article  ADS  Google Scholar 

  11. Chernyak, V. L. & Zhitnitsky, A. R. Asymptotic behavior of exclusive processes in QCD. Phys. Rep. 112, 173–318 (1984).

    Article  ADS  Google Scholar 

  12. Pacetti, S., Baldini, R. F. & Tomasi-Gustafsson, E. Proton electromagnetic form factors: basic notions, present achievements and future perspectives. Phys. Rep. 550–551, 1–103 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  13. Lees, J. P. Study of e+e → p\(\bar{p}\) via initial-state radiation at BABAR. Phys. Rev. D 87, 092005 (2013).

    Article  ADS  Google Scholar 

  14. Arbuzov, A. B. & Kopylova, T. V. On relativization of the Sommerfeld-Gamow-Sakharov factor. J. High Energ. Phys. 2012, 9 (2012).

    Article  ADS  Google Scholar 

  15. Ablikim, M. et al. Design and construction of the BESIII detector. Nucl. Instrum. Meth. A 614, 345–399 (2010).

    Article  ADS  Google Scholar 

  16. Bernardini, C. et al. Lifetime and beam size in a storage ring. Phys. Rev. Lett. 10, 407–409 (1963).

    Article  ADS  Google Scholar 

  17. Ping, R. G. An exclusive event generator for e+e scan experiments. Chinese Phys. C 38, 083001 (2014).

    Article  ADS  Google Scholar 

  18. Ablikim, M. et al. Luminosity measurements for the R scan experiment at BESIII. Chinese Phys. C 41, 063001 (2017).

    Article  ADS  Google Scholar 

  19. Ablikim, M. et al. Measurement of integrated luminosity and center-of-mass energy of data taken by BESIII at \(\sqrt{s}\) = 2.125 GeV. Chinese Phys. C 41, 113001 (2017).

    Article  ADS  Google Scholar 

  20. Ablikim, M. et al. Measurement of proton electromagnetic form factors in e+e → p\(\bar{p}\) in the energy region 2.00–3.08 GeV. Phys. Rev. Lett. 124, 042001 (2020).

    Article  ADS  Google Scholar 

  21. Ablikim, M. et al. Study of the process e+e → p\(\bar{p}\) via initial state radiation at BESIII. Phys. Rev. D 99, 092002 (2019).

    Article  ADS  Google Scholar 

  22. Bianconi, A. & Tomasi-Gustafsson, E. Periodic interference structures in the timelike proton form factor. Phys. Rev. Lett. 114, 232301 (2015).

    Article  ADS  Google Scholar 

  23. Bianconi, A. & Tomasi-Gustafsson, E. Phenomenological analysis of near-threshold periodic modulations of the proton timelike form factor. Phys. Rev. C 93, 035201 (2016).

    Article  ADS  Google Scholar 

  24. Lorenz, I. T., Hammer, F. W. & Meißner, U. G. New structures in the proton-antiproton system. Phys. Rev. D 92, 034018 (2015).

    Article  ADS  Google Scholar 

  25. Thomas, A. W. Interplay of spin and orbital angular momentum in the proton. Phys. Rev. Lett. 101, 102003 (2008).

    Article  ADS  Google Scholar 

  26. Pagels, H. Departures from chiral symmetry: a review. Phys. Rep. 16, 219–311 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  27. Hand, L. N., Miller, D. G. & Wilson, R. Electric and magnetic form factors of the nucleon. Rev. Mod. Phys. 35, 335–349 (1963).

    Article  ADS  Google Scholar 

  28. Hagen, G. et al. Neutron and weak-charge distributions of the 48Ca nucleus. Nat. Phys. 12, 186–190 (2015).

    Article  Google Scholar 

  29. Andronic, A., Braun-Munzinger, P., Redlich, K. & Stachel, J. Decoding the phase structure of QCD via particle production at high energy. Nature 561, 321–330 (2018).

    Article  ADS  Google Scholar 

  30. Adamczewski-Musch, J. et al. Probing dense baryon-rich matter with virtual photons. Nat. Phys. 15, 1040–1045 (2019).

    Article  Google Scholar 

  31. Bauswein, A. Equation of state constraints from multi-messenger observations of neutron star mergers. Ann. Phys. 411, 167958 (2019).

    Article  Google Scholar 

  32. Achasov, M. N. et al. Study of the process e+e → n\(\bar{n}\) at the VEPP-2000 e+e collider with the SND detector. Phys. Rev. D 90, 112007 (2014).

    Article  ADS  Google Scholar 

  33. Druzhinin, V. P. & Serednyakov, S. I. Measurement of the e+e → n\(\bar{n}\) cross section with the SND detector at the VEPP-2000 collider. EPJ Web Conf. 212, 07007 (2019).

    Article  Google Scholar 

  34. Jegerlehner, F. Hadronic contributions to the photon vacuum polarization and their role in precision physics. J. Phys. G 29, 101–110 (2003).

    Article  ADS  Google Scholar 

  35. Ping, R. G. et al. Tuning and validation of hadronic event generator for R value measurements in the tau-charm region. Chinese Phys. C 40, 113002 (2016).

    Article  ADS  Google Scholar 

  36. Carloni Calame, C. M., Montagna, G., Nicrosini, O. & Piccinini, F. The BABAYAGA event generator. Nucl. Phys. B Proc. Sup. 131, 48–55 (2004).

    Article  ADS  Google Scholar 

  37. Ping, R. G. et al. Event generators at BESIII. Chinese Phys. C 32, 599–602 (2008).

    Article  ADS  Google Scholar 

  38. Ma, X. et al. Determination of event start time at BESIII. Chinese Phys. C 32, 744–749 (2008).

    Article  ADS  Google Scholar 

  39. James, F. MINUIT—function minimization and error analysis: reference manual version 94.1. CERN-D506 (1994).

  40. Fletcher, R. A new approach to variable metric algorithms. Comput. J. 13, 317–322 (1970).

    Article  MATH  Google Scholar 

  41. Ablikim, M. et al. Study of J/Ψ → p\(\bar{p}\) and J/Ψ → n\(\bar{p}\). Phys. Rev. D 86, 032014 (2012).

    Article  ADS  Google Scholar 

  42. Berger, N. et al. Trigger efficiencies at BESIII. Chinese Phys. C 34, 1779–1784 (2010).

    Article  ADS  Google Scholar 

  43. Schmelling, M. Averaging correlated data. Phys. Scr. 51, 676–679 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the staff of BEPCII, IHEP Computing Center and Supercomputing Center of USTC for their strong support. This work is supported in part by National Key R&D Program of China under contract nos. 2020YFA0406400 and 2020YFA0406300; National Natural Science Foundation of China (NSFC) under contract nos. 11625523, 11635010, 11735014, 11805124, 11822506, 11835012, 11935015, 11935016, 11935018, 11961141012, 12022510, 12025502, 12035009, 12035013, 12061131003, 11705192, 11950410506 and 12061131003; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under contract nos. U1732263, U1832207, U1832103 and U2032111; CAS Key Research Program of Frontier Sciences under contract no. QYZDJ-SSW-SLH040; 100 Talents Program of CAS; Guangdong Major Project of Basic and Applied Basic Research no. 2020B030103008; Science and Technology Program of Guangzhou (no. 2019050001); INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under contract no. 758462; European Union Horizon 2020 research and innovation programme under contract no. Marie Skłodowska-Curie grant agreement no. 894790; German Research Foundation DFG under contract no. 443159800; Collaborative Research Center CRC 1044, FOR 2359 and GRK 214; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under contract no. DPT2006K-120470; National Science and Technology fund; Olle Engkvist Foundation under contract no. 200-0605; STFC (United Kingdom); The Knut and Alice Wallenberg Foundation (Sweden) under contract no. 2016.0157; The Royal Society, UK, under contract nos. DH140054 and DH160214; The Swedish Research Council; US Department of Energy under contract nos. DE-FG02-05ER41374 and DE-SC-0012069.

Author information

Authors and Affiliations

Consortia

Contributions

All the authors have contributed to this publication, being variously involved in the design and construction of the detectors, writing software, calibrating sub-systems, operating the detectors, acquiring data and analysing the processed data.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Hyun-Chul Kim, Galina Pakhlova and Bogdan Wojtsekhowski for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, discussion and Tables 1–5.

Source data

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

The BESIII Collaboration. Oscillating features in the electromagnetic structure of the neutron. Nat. Phys. 17, 1200–1204 (2021). https://doi.org/10.1038/s41567-021-01345-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01345-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing