Review Article | Published:

Challenges and opportunities in controlling mosquito-borne infections

Naturevolume 559pages490497 (2018) | Download Citation


Mosquito-borne diseases remain a major cause of morbidity and mortality across the tropical regions. Despite much progress in the control of malaria, malaria-associated morbidity remains high, whereas arboviruses—most notably dengue—are responsible for a rising burden of disease, even in middle-income countries that have almost completely eliminated malaria. Here I discuss how new interventions offer the promise of considerable future reductions in disease burden. However, I emphasize that intervention programmes need to be underpinned by rigorous trials and quantitative epidemiological analyses. Such analyses suggest that the long-term goal of elimination is more feasible for dengue than for malaria, even if malaria elimination would offer greater overall health benefit to the public.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Gething, P. W. et al. Mapping Plasmodium falciparum mortality in Africa between 1990 and 2015. N. Engl. J. Med. 375, 2435–2445 (2016).

  2. 2.

    Murray, C. J. L. et al. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet 379, 413–431 (2012).

  3. 3.

    WHO. Estimated malaria deaths by region. (2016).

  4. 4.

    Bhatt, S. et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526, 207–211 (2015). This study estimates the impact of different malaria interventions and treatment on infection prevalence and disease incidence.

  5. 5.

    Cibulskis, R. E. et al. Malaria: global progress 2000–2015 and future challenges. Infect. Dis. Poverty 5, 61 (2016).

  6. 6.

    Tatem, A. J., Gething, P. W., Smith, D. L. & Hay, S. I. Urbanization and the global malaria recession. Malar. J. 12, 133 (2013).

  7. 7.

    WHO. World malaria report 2017. (2017).

  8. 8.

    GBD 2016 Causes of Death Collaborators. Global, regional, and national age–sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390, 1151–1210 (2017).

  9. 9.

    Stanaway, J. D. et al. The global burden of dengue: an analysis from the Global Burden of Disease Study 2013. Lancet Infect. Dis. 16, 712–723 (2016).

  10. 10.

    Tian, H. et al. Increasing airline travel may facilitate co-circulation of multiple dengue virus serotypes in Asia. PLoS Negl. Trop. Dis. 11, e0005694 (2017).

  11. 11.

    Messina, J. P. et al. Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol. 22, 138–146 (2014).

  12. 12.

    Jansen, C. C. & Beebe, N. W. The dengue vector Aedes aegypti: what comes next. Microbes Infect. 12, 272–279 (2010).

  13. 13.

    Campbell, L. P. et al. Climate change influences on global distributions of dengue and chikungunya virus vectors. Phil. Trans. R. Soc. B 370, 20140135 (2015).

  14. 14.

    Kalayanarooj, S., Rothman, A. L. & Srikiatkhachorn, A. Case management of dengue: lessons learned. J. Infect. Dis. 215, S79–S88 (2017).

  15. 15.

    Weaver, S. C., Charlier, C., Vasilakis, N. & Lecuit, M. Zika, chikungunya, and other emerging vector-borne viral diseases. Annu. Rev. Med. 69, 395–408 (2018).

  16. 16.

    Leparc-Goffart, I., Nougairede, A., Cassadou, S., Prat, C. & de Lamballerie, X. Chikungunya in the Americas. Lancet 383, 514 (2014).

  17. 17.

    Pialoux, G., Gaüzère, B.-A., Jauréguiberry, S. & Strobel, M. Chikungunya, an epidemic arbovirosis. Lancet Infect. Dis. 7, 319–327 (2007).

  18. 18.

    Lessler, J. et al. Assessing the global threat from Zika virus. Science 353, aaf8160 (2016). A comprehensive review of the epidemiology of Zika, the public health threat posed by Zika infections and current uncertainties.

  19. 19.

    Cohen, J. Where has all the Zika gone? Science 357, 631–632 (2017).

  20. 20.

    Ferguson, N. M. et al. Countering Zika in Latin America. Science 353, 353–354 (2016).

  21. 21.

    Netto, E. M. et al. High Zika virus seroprevalence in Salvador, Northeastern Brazil limits the potential for further outbreaks. MBio 8, e01390-17 (2017).

  22. 22.

    Shearer, F. M. et al. Existing and potential infection risk zones of yellow fever worldwide: a modelling analysis. Lancet Glob. Health 6, e270–e278 (2018).

  23. 23.

    Ferguson, N. M. et al. Benefits and risks of the Sanofi–Pasteur dengue vaccine: modeling optimal deployment. Science 353, 1033–1036 (2016).

  24. 24.

    Flasche, S. et al. The long-term safety, public health impact, and cost-effectiveness of routine vaccination with a recombinant, live-attenuated dengue vaccine (Dengvaxia): a model comparison study. PLoS Med. 13, e1002181 (2016). This study presents the model comparison exercise that informed initial WHO recommendations on the use of the Sanofi dengue vaccine.

  25. 25.

    Olotu, A. et al. Seven-year efficacy of RTS,S/AS01 malaria vaccine among young African children. N. Engl. J. Med. 374, 2519–2529 (2016).

  26. 26.

    Penny, M. A. et al. Public health impact and cost-effectiveness of the RTS,S/AS01 malaria vaccine: a systematic comparison of predictions from four mathematical models. Lancet 387, 367–375 (2016). This study presents the model comparison exercise that informed WHO recommendations on the use of the RTS, S malaria vaccine.

  27. 27.

    RTS,S Clinical Trials Partnership. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 386, 31–45 (2015).

  28. 28.

    Hemingway, J. et al. Averting a malaria disaster: will insecticide resistance derail malaria control? Lancet 387, 1785–1788 (2016).

  29. 29.

    Achee, N. L. et al. A critical assessment of vector control for dengue prevention. PLoS Negl. Trop. Dis. 9, e0003655 (2015).

  30. 30.

    Bowman, L. R., Donegan, S. & McCall, P. J. Is dengue vector control deficient in effectiveness or evidence?: Systematic review and meta-analysis. PLoS Negl. Trop. Dis. 10, e0004551 (2016).

  31. 31.

    Heintze, C., Velasco Garrido, M. & Kroeger, A. What do community-based dengue control programmes achieve? A systematic review of published evaluations. Trans. R. Soc. Trop. Med. Hyg. 101, 317–325 (2007).

  32. 32.

    Wilson, A. L. et al. Evidence-based vector control? Improving the quality of vector control trials. Trends Parasitol. 31, 380–390 (2015). This paper outlines good practice for the design of field trials of vector control interventions.

  33. 33.

    Barrozo, R. B., Schilman, P. E., Minoli, S. A. & Lazzari, C. R. Daily rhythms in disease-vector insects. Biol. Rhythm Res. 35, 79–92 (2004).

  34. 34.

    Griffin, J. T. et al. Gradual acquisition of immunity to severe malaria with increasing exposure. Proc. R. Soc. B 282, 20142657 (2015).

  35. 35.

    Gupta, S., Trenholme, K., Anderson, R. M. & Day, K. P. Antigenic diversity and the transmission dynamics of Plasmodium falciparum. Science 263, 961–963 (1994).

  36. 36.

    Clapham, H. E., Cummings, D. A. T. & Johansson, M. A. Immune status alters the probability of apparent illness due to dengue virus infection: evidence from a pooled analysis across multiple cohort and cluster studies. PLoS Negl. Trop. Dis. 11, e0005926 (2017).

  37. 37.

    Guzman, M. G., Alvarez, M. & Halstead, S. B. Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Arch. Virol. 158, 1445–1459 (2013).

  38. 38.

    Katzelnick, L. C. et al. Antibody-dependent enhancement of severe dengue disease in humans. Science 358, 929–932 (2017).

  39. 39.

    Salje, H. et al. Reconstruction of antibody dynamics and infection histories to evaluate dengue risk. Nature 557, 719–723 (2018).

  40. 40.

    Gibbons, R. V. et al. Analysis of repeat hospital admissions for dengue to estimate the frequency of third or fourth dengue infections resulting in admissions and dengue hemorrhagic fever, and serotype sequences. Am. J. Trop. Med. Hyg. 77, 910–913 (2007).

  41. 41.

    Thai, K. T. D. et al. Age-specificity of clinical dengue during primary and secondary infections. PLoS Negl. Trop. Dis. 5, e1180 (2011).

  42. 42.

    Griffin, J. T. et al. Potential for reduction of burden and local elimination of malaria by reducing Plasmodium falciparum malaria transmission: a mathematical modelling study. Lancet Infect. Dis. 16, 465–472 (2016).

  43. 43.

    Griffin, J. T. et al. Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS Med. 7, e1000324 (2010).

  44. 44.

    Walker, P. G. T., Griffin, J. T., Ferguson, N. M. & Ghani, A. C. Estimating the most efficient allocation of interventions to achieve reductions in Plasmodium falciparum malaria burden and transmission in Africa: a modelling study. Lancet Glob. Health 4, e474–e484 (2016). This study uses mathematical modelling to assess optimal allocation of different malaria interventions in different transmission settings across Africa.

  45. 45.

    Dorigatti, I., McCormack, C., Nedjati-Gilani, G. & Ferguson, N. M. Using Wolbachia for dengue control: insights from modelling. Trends Parasitol. 34, 102–113 (2018).

  46. 46.

    Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).

  47. 47.

    Salje, H. et al. Dengue diversity across spatial and temporal scales: local structure and the effect of host population size. Science 355, 1302–1306 (2017). This study uses genetic and epidemiological data to quantitatively characterize the spatial range and local population drivers of dengue virus transmission.

  48. 48.

    Reiner, R. C. Jr et al. Time-varying, serotype-specific force of infection of dengue virus. Proc. Natl Acad. Sci. USA 111, E2694–E2702 (2014).

  49. 49.

    Andersson, N. et al. Evidence based community mobilization for dengue prevention in Nicaragua and Mexico (Camino Verde, the Green Way): cluster randomized controlled trial. Br. Med. J. 351, h3267 (2015).

  50. 50.

    Cauchemez, S. et al. Association between Zika virus and microcephaly in French Polynesia, 2013–15: a retrospective study. Lancet 387, 2125–2132 (2016).

  51. 51.

    Johansson, M. A., Mier-y-Teran-Romero, L., Reefhuis, J., Gilboa, S. M. & Hills, S. L. Zika and the risk of microcephaly. N. Engl. J. Med. 375, 1–4 (2016).

  52. 52.

    Reiner, R. C. Jr et al. Quantifying the epidemiological impact of vector control on dengue. PLoS Negl. Trop. Dis. 10, e0004588 (2016).

  53. 53.

    Ooi, E.-E., Goh, K.-T. & Gubler, D. J. Dengue prevention and 35 years of vector control in Singapore. Emerg. Infect. Dis. 12, 887–893 (2006).

  54. 54.

    Fullman, N., Burstein, R., Lim, S. S., Medlin, C. & Gakidou, E. Nets, spray or both? The effectiveness of insecticide-treated nets and indoor residual spraying in reducing malaria morbidity and child mortality in sub-Saharan Africa. Malar. J. 12, 62 (2013).

  55. 55.

    Lengeler, C. Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database Syst. Rev. 2, CD000363 (2004).

  56. 56.

    Pluess, B., Tanser, F. C., Lengeler, C. & Sharp, B. L. Indoor residual spraying for preventing malaria. Cochrane Database Syst. Rev. 4, CD006657 (2010).

  57. 57.

    West, P. A. et al. Indoor residual spraying in combination with insecticide-treated nets compared to insecticide-treated nets alone for protection against malaria: a cluster randomised trial in Tanzania. PLoS Med. 11, e1001630 (2014).

  58. 58.

    Powell, J. R. & Tabachnick, W. J. History of domestication and spread of Aedes aegypti—a review. Mem. Inst. Oswaldo Cruz 108, 11–17 (2013).

  59. 59.

    De Silva, P. M. & Marshall, J. M. Factors contributing to urban malaria transmission in sub-Saharan Africa: a systematic review. J. Trop. Med. 2012, 819563 (2012).

  60. 60.

    WHO. Integrated vector management. Accessed 17 February 2018.

  61. 61.

    Department of Control of Neglected Tropical Diseases. How to design vector control efficacy trials. Guidance on phase III vector control field trial design. Report No. WHO/HTM/NTD/VEM/2017.03 (World Health Organization, 2017).

  62. 62.

    Wolbers, M., Kleinschmidt, I., Simmons, C. P. & Donnelly, C. A. Considerations in the design of clinical trials to test novel entomological approaches to dengue control. PLoS Negl. Trop. Dis. 6, e1937 (2012).

  63. 63.

    Snow, R. W., Guerra, C. A., Noor, A. M., Myint, H. Y. & Hay, S. I. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434, 214–217 (2005).

  64. 64.

    White, M. T. et al. A combined analysis of immunogenicity, antibody kinetics and vaccine efficacy from phase 2 trials of the RTS,S malaria vaccine. BMC Med. 12, 117 (2014).

  65. 65.

    White, M. T. et al. Immunogenicity of the RTS,S/AS01 malaria vaccine and implications for duration of vaccine efficacy: secondary analysis of data from a phase 3 randomised controlled trial. Lancet Infect. Dis. 15, 1450–1458 (2015). This study analyses the data from the phase III trials of the RTS,S malaria vaccine to derive a mechanistic model of vaccine action and propose a predictive correlate of protection.

  66. 66.

    Blackman, M. A., Kim, I.-J., Lin, J.-S. & Thomas, S. J. Challenges of vaccine development for Zika virus. Viral Immunol. 31, 117–123 (2018).

  67. 67.

    Asher, J. et al. Preliminary results of models to predict areas in the Americas with increased likelihood of Zika virus transmission in 2017. Preprint at (2017).

  68. 68.

    WHO. Efficacy trials of ZIKV vaccines: endpoints, trial design, site selection. (2017).

  69. 69.

    Eisele, T. P. et al. Short-term impact of mass drug administration with dihydroartemisinin plus piperaquine on malaria in Southern Province Zambia: a cluster-randomized controlled trial. J. Infect. Dis. 214, 1831–1839 (2016).

  70. 70.

    Brady, O. J. et al. Role of mass drug administration in elimination of Plasmodium falciparum malaria: a consensus modelling study. Lancet Glob. Health 5, e680–e687 (2017).

  71. 71.

    Bigira, V. et al. Protective efficacy and safety of three antimalarial regimens for the prevention of malaria in young Ugandan children: a randomized controlled trial. PLoS Med. 11, e1001689 (2014).

  72. 72.

    Capeding, M. R. et al. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet 384, 1358–1365 (2014).

  73. 73.

    Villar, L. et al. Efficacy of a tetravalent dengue vaccine in children in Latin America. N. Engl. J. Med. 372, 113–123 (2015).

  74. 74.

    Winskill, P., Walker, P. G., Griffin, J. T. & Ghani, A. C. Modelling the cost-effectiveness of introducing the RTS,S malaria vaccine relative to scaling up other malaria interventions in sub-Saharan Africa. BMJ Glob. Health 2, e000090 (2017).

  75. 75.

    World Health Organization. Malaria vaccine: WHO position paper—January 2016. Wkly Epidemiol. Rec. 91, 33–51 (2016).

  76. 76.

    World Health Organization. Dengue vaccine: WHO position paper—July 2016. Wkly Epidemiol. Rec. 91, 349–364 (2016).

  77. 77.

    WHO. Updated questions and answers related to information presented in the Sanofi Pasteur press release on 30 November 2017 with regards to the dengue vaccine Dengvaxia. (2017).

  78. 78.

    Screaton, G. & Mongkolsapaya, J. Which dengue vaccine approach is the most promising, and should we be concerned about enhanced disease after vaccination?: The challenges of a dengue vaccine. Cold Spring Harb. Perspect. Biol. 10, a029520 (2018).

  79. 79.

    WHO. Tables of malaria vaccine projects globally. (2017).

  80. 80.

    Barba-Spaeth, G. et al. Structural basis of potent Zika–dengue virus antibody cross-neutralization. Nature 536, 48–53 (2016).

  81. 81.

    Fiorenzano, J. M., Koehler, P. G. & Xue, R.-D. Attractive toxic sugar bait (ATSB) for control of mosquitoes and its impact on non-target organisms: a review. Int. J. Environ. Res. Public Health 14, 398 (2017).

  82. 82.

    Qualls, W. A. et al. Indoor use of attractive toxic sugar bait (ATSB) to effectively control malaria vectors in Mali, West Africa. Malar. J. 14, 301 (2015).

  83. 83.

    Slater, H. C., Walker, P. G. T., Bousema, T., Okell, L. C. & Ghani, A. C. The potential impact of adding ivermectin to a mass treatment intervention to reduce malaria transmission: a modelling study. J. Infect. Dis. 210, 1972–1980 (2014).

  84. 84.

    Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).

  85. 85.

    Moreira, L. A. et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139, 1268–1278 (2009).

  86. 86.

    Walker, T. et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476, 450–453 (2011).

  87. 87.

    Ferguson, N. M. et al. Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti. Sci. Transl. Med. 7, 279ra237 (2015). This study combines experiemental work and modelling to estimate the likely impact of replacing wild-type A. aegypti with Wolbachia-infected mosquitoes on dengue disease transmission.

  88. 88.

    Bian, G. et al. Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science 340, 748–751 (2013).

  89. 89.

    Adelman, Z. N. Genetic Control of Malaria and Dengue (Academic, Amsterdam, 2015).

  90. 90.

    Gabrieli, P., Smidler, A. & Catteruccia, F. Engineering the control of mosquito-borne infectious diseases. Genome Biol. 15, 535 (2014).

  91. 91.

    Adelman, Z. N. & Tu, Z. Control of mosquito-borne infectious diseases: sex and gene drive. Trends Parasitol. 32, 219–229 (2016).

  92. 92.

    Marshall, J. M. & Taylor, C. E. Malaria control with transgenic mosquitoes. PLoS Med. 6, e1000020 (2009).

  93. 93.

    Galizi, R. et al. A synthetic sex ratio distortion system for the control of the human malaria mosquito. Nat. Commun. 5, 3977 (2014).

  94. 94.

    Burt, A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc. R. Soc. B 270, 921–928 (2003). This study was one of the first to provide a rigorous population genetic assessment of the potential of using homing endonuclease genes to drive genetic modification of vector populations for disease control purposes.

  95. 95.

    Deredec, A., Godfray, H. C. J. & Burt, A. Requirements for effective malaria control with homing endonuclease genes. Proc. Natl Acad. Sci. USA 108, E874–E880 (2011).

  96. 96.

    Li, M. et al. Germline Cas9 expression yields highly efficient genome engineering in a major worldwide disease vector, Aedes aegypti. Proc. Natl Acad. Sci. USA 114, E10540–E10549 (2017).

  97. 97.

    Gantz, V. M. et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc. Natl Acad. Sci. USA 112, E6736–E6743 (2015).

  98. 98.

    Wang, S. & Jacobs-Lorena, M. Genetic approaches to interfere with malaria transmission by vector mosquitoes. Trends Biotechnol. 31, 185–193 (2013).

  99. 99.

    Severson, D. W. & Behura, S. K. genome investigations of vector competence in Aedes aegypti to inform novel arbovirus disease control approaches. Insects 7, 58 (2016).

  100. 100.

    Wesolowski, A. et al. Quantifying the impact of human mobility on malaria. Science 338, 267–270 (2012).

Download references


I thank the Medical Research Council, the National Institute of Health Research Health Protection Research Unit programme, the National Institute of General Medical Sciences ‘MIDAS’ programme and the Bill and Melinda Gates Foundation for research funding. Among many others, A. Ghani, A. Burt and S. O’Neill have informed my understanding of this topic during many illuminating discussions.

Author information


  1. MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK

    • Neil M. Ferguson


  1. Search for Neil M. Ferguson in:

Competing interests

The author declares no competing interests.

Corresponding author

Correspondence to Neil M. Ferguson.

About this article

Publication history




Issue Date



By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.