Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Flying couplers above spinning resonators generate irreversible refraction


Creating optical components that allow light to propagate in only one direction—that is, that allow non-reciprocal propagation or ‘isolation’ of light—is important for a range of applications. Non-reciprocal propagation of sound can be achieved simply by using mechanical components that spin1,2. Spinning also affects de Broglie waves3, so a similar idea could be applied in optics. However, the extreme rotation rates that would be required, owing to light travelling much faster than sound, lead to unwanted wobbling. This wobbling makes it difficult to maintain the separation between the spinning devices and the couplers to within tolerance ranges of several nanometres, which is essential for critical coupling4,5. Consequently, previous applications of optical6,7,8,9,10,11,12,13,14,15,16,17 and optomechanical10,17,18,19,20 isolation have used alternative methods. In hard-drive technology, the magnetic read heads of a hard-disk drive fly aerodynamically above the rapidly rotating disk with nanometre precision, separated by a thin film of air with near-zero drag that acts as a lubrication layer21. Inspired by this, here we report the fabrication of photonic couplers (tapered fibres that couple light into the resonators) that similarly fly above spherical resonators with a separation of only a few nanometres. The resonators spin fast enough to split their counter-circulating optical modes, making the fibre coupler transparent from one side while simultaneously opaque from the other—that is, generating irreversible transmission. Our setup provides 99.6 per cent isolation of light in standard telecommunication fibres, of the type used for fibre-based quantum interconnects22. Unlike flat geometries, such as between a magnetic head and spinning disk, the saddle-like, convex geometry of the fibre and sphere in our setup makes it relatively easy to bring the two closer together, which could enable surface-science studies at nanometre-scale separations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Experimental setup.
Fig. 2: Experimentally measured isolation of 99.6%.
Fig. 3: The Fizeau shift.


  1. 1.

    Fleury, R., Sounas, D. L., Sieck, C. F., Haberman, M. R. & Alù, A. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516–519 (2014).

    ADS  Article  PubMed  CAS  Google Scholar 

  2. 2.

    Yang, Z. et al. Topological acoustics. Phys. Rev. Lett. 114, 114301 (2015).

    ADS  Article  PubMed  CAS  Google Scholar 

  3. 3.

    Hasselbach, F. & Nicklaus, M. Sagnac experiment with electrons: observation of the rotational phase shift of electron waves in vacuum. Phys. Rev. A 48, 143–151 (1993).

    ADS  Article  PubMed  CAS  Google Scholar 

  4. 4.

    Dubreuil, N. et al. Eroded monomode optical fiber for whispering-gallery mode excitation in fused-silica microspheres. Opt. Lett. 20, 813–815 (1995).

    ADS  Article  PubMed  CAS  Google Scholar 

  5. 5.

    Spillane, S. M., Kippenberg, T. J., Painter, O. J. & Vahala, K. J. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902 (2003).

    ADS  Article  PubMed  CAS  Google Scholar 

  6. 6.

    Chang, L. et al. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photon. 8, 524–529 (2014).

    ADS  Article  CAS  Google Scholar 

  7. 7.

    Gallo, K., Assanto, G., Parameswaran, K. R. & Fejer, M. M. All-optical diode in a periodically poled lithium niobate waveguide. Appl. Phys. Lett. 79, 314–316 (2001).

    ADS  Article  CAS  Google Scholar 

  8. 8.

    Ibrahim, S. K., Bhandare, S., Sandel, D., Zhang, H. & Noe, R. Non-magnetic 30 dB integrated optical isolator in III/V material. Electron. Lett. 40, 1293–1294 (2004).

    Article  Google Scholar 

  9. 9.

    Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nat. Photon. 3, 91–94 (2009); corrigendum 3, 303 (2009).

    ADS  Article  CAS  Google Scholar 

  10. 10.

    Kang, M. S., Butsch, A. & Russell, P. S. J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat. Photon. 5, 549–553 (2011).

    ADS  Article  CAS  Google Scholar 

  11. 11.

    Lira, H., Yu, Z., Fan, S. & Lipson, M. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett. 109, 033901 (2012).

    ADS  Article  PubMed  CAS  Google Scholar 

  12. 12.

    Fan, L. et al. An all-silicon passive optical diode. Science 335, 447–450 (2012).

    ADS  Article  PubMed  CAS  Google Scholar 

  13. 13.

    Poulton, C. G. et al. Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides. Opt. Express 20, 21235–21246 (2012).

    ADS  Article  PubMed  CAS  Google Scholar 

  14. 14.

    Hafezi, M. & Rabl, P. Optomechanically induced non-reciprocity in microring resonators. Opt. Express 20, 7672–7684 (2012).

    ADS  Article  PubMed  Google Scholar 

  15. 15.

    Peng, B. et al. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014).

    Article  CAS  Google Scholar 

  16. 16.

    Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    ADS  Article  CAS  Google Scholar 

  17. 17.

    Shen, Z. et al. Experimental realization of optomechanically induced non-reciprocity. Nat. Photon. 10, 657–661 (2016).

    ADS  Article  CAS  Google Scholar 

  18. 18.

    Kim, J., Kim, S. & Bahl, G. Complete linear optical isolation at the microscale with ultralow loss. Sci. Rep. 7, 1647 (2017).

    ADS  Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. 19.

    Fang, K. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).

    Article  CAS  Google Scholar 

  20. 20.

    Ruesink, F., Miri, M.-A., Alù, A. & Verhagen, E. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun. 7, 13662 (2016).

    ADS  Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. 21.

    Gross, W. A. Gas Film Lubrication (Wiley, New York, 1962).

    Google Scholar 

  22. 22.

    Shomroni, I., Rosenblum, S., Lovsky, Y. & Bechler, O. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345, 903–906 (2014).

    ADS  Article  PubMed  CAS  Google Scholar 

  23. 23.

    Franke-Arnold, S., Gibson, G., Boyd, R. W. & Padgett, M. J. Rotary photon drag enhanced by a slow-light medium. Science 333, 65–67 (2011).

    ADS  Article  PubMed  CAS  Google Scholar 

  24. 24.

    Matthewson, M., Kurkjian, C. R. & Gulati, S. T. Strength measurement of optical fibers by bending. J. Am. Ceram. Soc. 69, 815–821 (1986).

    Article  CAS  Google Scholar 

  25. 25.

    Malykin, G. B. The Sagnac effect: correct and incorrect explanations. Phys. Uspekhi 43, 1229–1252 (2000).

    ADS  MathSciNet  Article  Google Scholar 

  26. 26.

    Mazzei, A. et al. Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light. Phys. Rev. Lett. 99, 173603 (2007).

    ADS  Article  PubMed  CAS  Google Scholar 

  27. 27.

    Gorodetsky, M. L. & Ilchenko, V. S. Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes. J. Opt. Soc. Am. B 16, 147–154 (1999).

    ADS  Article  CAS  Google Scholar 

  28. 28.

    Li, J., Liu, B., Hua, W. & Ma, Y. Effects of intermolecular forces on deep sub-10 nm spaced sliders. IEEE Trans. Magn. 38, 2141–2143 (2002).

    ADS  Article  CAS  Google Scholar 

  29. 29.

    Arita, Y., Mazilu, M. & Dholakia, K. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat. Commun. 4, 2374 (2013).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    ADS  Article  PubMed  CAS  Google Scholar 

  31. 31.

    Gross, W. A. et al. Fluid Film Lubrication (John Wiley and Sons, New York, 1980).

    Google Scholar 

  32. 32.

    Busse, W. F. & Denton, W. H. Water-lubricated soft-rubber bearings. Trans. Am. Soc. Mech. Eng. 54, 3–10 (1932).

    Google Scholar 

  33. 33.

    Blok, H. & Van Rossum, J. J. The foil bearing—a new departure in hydrodynamic lubrication. Lubr. Eng. 9, 316–320 (1953).

    Google Scholar 

  34. 34.

    Eshel, A. Compressibility effects on the infinitely wide, perfectly flexible foil bearing. J. Lubr. Technol. 90, 221–225 (1968).

    Article  Google Scholar 

  35. 35.

    Eshel, A. & Elrod, H. G. Stiffness effects on the infinitely wide foil bearing. J. Lubr. Technol. 89, 92–97 (1967).

    Article  Google Scholar 

  36. 36.

    Langlois, W. E. The lightly loaded foil bearing at zero angle of wrap. IBM J. Res. Develop. 7, 112–116 (1963).

    Article  Google Scholar 

  37. 37.

    Jennings, S. G. The mean free path in air. J. Aerosol Sci. 19, 159–166 (1988).

    ADS  Article  CAS  Google Scholar 

  38. 38.

    Fukui, S. & Kaneko, R. Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation: first report—derivation of a generalized lubrication equation including thermal creep flow. J. Tribol. 110, 253–261 (1988).

    Article  CAS  Google Scholar 

  39. 39.

    Shen, S. & Chen, G. in Encyclopedia of Tribology (eds Wang, Q. J. & Chung, Y.-W.) 2309–2313 (Springer, New York, 2013).

Download references


We thank U. Hofi, Z. Katz, Y. Halupovich and B. Khachatryan for their help. This work was funded by the Israeli Centers for Research Excellence (I-CORE), ‘Circle of Light’ Excellence Center, the Israel Science Foundation (2013/15), the Israel Ministry of Science, Technology and Space, the MURI Center for Dynamic Magneto-Optics via the AFOSR Award number FA9550-14-1-0040, the Army Research Office (ARO) under grant number 73315PH, the AOARD under grant number FA2386-18-1-4045, the CREST under grant number JPMJCR1676, the IMPACT programme of JST, the RIKEN-AIST Challenge Research Fund, the JSPS-RFBR under grant number 17-52-50023, and the Sir John Templeton Foundation.

Reviewer information

Nature thanks A. Alù and M. Levy for their contribution to the peer review of this work.

Author information




S.M. and R.D. performed the experiments. A.U.H., H.J., F.N., E.M., Y.K. and D.N.C. performed the theoretical analysis. T.C. supervised the work.

Corresponding author

Correspondence to Tal Carmon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Table 1 Effects of lubricant compressibility

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maayani, S., Dahan, R., Kligerman, Y. et al. Flying couplers above spinning resonators generate irreversible refraction. Nature 558, 569–572 (2018).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing