The formation of a primordial crust is a critical step in the evolution of terrestrial planets but the timing of this process is poorly understood. The mineral zircon is a powerful tool for constraining crust formation because it can be accurately dated with the uranium-to-lead (U–Pb) isotopic decay system and is resistant to subsequent alteration. Moreover, given the high concentration of hafnium in zircon, the lutetium-to-hafnium (176Lu–176Hf) isotopic decay system can be used to determine the nature and formation timescale of its source reservoir1,2,3. Ancient igneous zircons with crystallization ages of around 4,430 million years (Myr) have been reported in Martian meteorites that are believed to represent regolith breccias from the southern highlands of Mars4,5. These zircons are present in evolved lithologies interpreted to reflect re-melted primary Martian crust4, thereby potentially providing insight into early crustal evolution on Mars. Here, we report concomitant high-precision U–Pb ages and Hf-isotope compositions of ancient zircons from the NWA 7034 Martian regolith breccia. Seven zircons with mostly concordant U–Pb ages define 207Pb/206Pb dates ranging from 4,476.3 ± 0.9 Myr ago to 4,429.7 ± 1.0 Myr ago, including the oldest directly dated material from Mars. All zircons record unradiogenic initial Hf-isotope compositions inherited from an enriched, andesitic-like crust extracted from a primitive mantle no later than 4,547 Myr ago. Thus, a primordial crust existed on Mars by this time and survived for around 100 Myr before it was reworked, possibly by impacts4,5, to produce magmas from which the zircons crystallized. Given that formation of a stable primordial crust is the end product of planetary differentiation, our data require that the accretion, core formation and magma ocean crystallization on Mars were completed less than 20 Myr after the formation of the Solar System. These timescales support models that suggest extremely rapid magma ocean crystallization leading to a gravitationally unstable stratified mantle, which subsequently overturns, resulting in decompression melting of rising cumulates and production of a primordial basaltic to andesitic crust6,7.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Stevenson, R. K. & Patchett, P. J. Implications for the evolution of continental-crust from Hf-isotope systematics of Archean detrital zircons. Geochim. Cosmochim. Acta 54, 1683–1697 (1990).

  2. 2.

    Amelin, Y., Lee, D.-C., Halliday, A. N. & Pidgeon, R. T. Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons. Nature 399, 252–255 (1999).

  3. 3.

    Amelin, Y., Lee, D.-C. & Halliday, A. N. Early-middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single grain zircons. Geochim. Cosmochim. Acta 64, 4205–4225 (2000).

  4. 4.

    Humayun, M. et al. Origin and age of the earliest Martian crust from meteorite NWA 7533. Nature 503, 513–516 (2013).

  5. 5.

    McCubbin, F. M. et al. Geologic history of Martian regolith breccia Northwest Africa 7034: evidence for hydrothermal activity and lithologic diversity in the Martian crust. J. Geophys. Res. Planets 121, 2120–2149 (2016).

  6. 6.

    Elkins-Tanton, L. T., Hess, P. C. & Parmentier, E. M. Possible formation of ancient crust on Mars through magma ocean processes. J. Geophys. Res. Planets 110, E12S01 (2005).

  7. 7.

    Elkins-Tanton, L. T. Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008).

  8. 8.

    Dauphas, N. & Pourmand, A. Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489–492 (2011).

  9. 9.

    Nimmo, F. & Tanaka, K. Early crustal evolution of Mars. Annu. Rev. Earth Planet. Sci. 33, 133–161 (2005).

  10. 10.

    Borg, L. E., Brennecka, G. A. & Symes, S. J. K. Accretion timescale and impact history of Mars deduced from the isotopic systematics of martian meteorites. Geochim. Cosmochim. Acta 175, 150–167 (2016).

  11. 11.

    Caro, G. Early silicate Earth differentiation. Annu. Rev. Earth Planet. Sci. 39, 31–58 (2011).

  12. 12.

    Carlson, R. W. et al. How did early Earth become our modern world? Annu. Rev. Earth Planet. Sci. 42, 151–178 (2014).

  13. 13.

    McSween, H. Y. Petrology on Mars. Am. Mineral. 100, 2380–2395 (2015).

  14. 14.

    Schiller, M., Bizzarro, M. & Fernandes, V. A. Isotopic evolution of the protoplanetary disk and the building blocks of Earth and Moon. Nature 555, 507–510 (2018).

  15. 15.

    Debaille, V., Brandon, A. D., Yin, Q.-Z. & Jacobsen, B. Coupled 142Nd–143Nd evidence for a protracted magma ocean in Mars. Nature 450, 525–528 (2007).

  16. 16.

    Kruijer, T. S. et al. The early differentiation of Mars inferred from Hf-W chronometry. Earth Planet. Sci. Lett. 474, 345–354 (2017).

  17. 17.

    Whitehouse, M. J., Nemchin, A. A. & Pidgeon, R. T. What can Hadean detrital zircon really tell us? A critical evaluation of their geochronology with implications for the interpretation of oxygen and hafnium isotopes. Gondwana Res. 51, 78–91 (2017).

  18. 18.

    Bouvier, A., Vervoort, J. D. & Patchett, P. J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48–57 (2008).

  19. 19.

    Bizzarro, M., Baker, J. A. & Ulfbeck, D. A new digestion and chemical separation technique for rapid and highly reproducible determination of Lu/Hf and Hf isotope ratios in geological materials by MC-ICP-MS. Geostand. Newsl. 27, 133–145 (2003).

  20. 20.

    Connelly, J. N., Ulfbeck, D. G., Thrane, K., Bizzarro, M. & Housh, T. A method for purifying Lu and Hf for analysis by MC-ICP-MS using TODGA resin. Chem. Geol. 233, 126–136 (2006).

  21. 21.

    Kemp, A. I. S. et al. Hadean crustal evolution revisited: new constraints from Pb-Hf isotope systematics of the Jack Hills zircons. Earth Planet. Sci. Lett. 296, 45–56 (2010).

  22. 22.

    McSween, H. Y., Taylor, J. & Wyatt, M. B. Elemental composition of the Martian crust. Science 324, 736–739 (2009).

  23. 23.

    Rudnick, R. L. & Gao, S. in The Crust (ed. Rudnick, R. L.) Treatise on Geochemistry Vol. 3, 1–64 (Elsevier, Amsterdam, 2003).

  24. 24.

    Sautter, V. et al. In situ evidence for continental crust on early Mars. Nat. Geosci. 8, 605–609 (2015).

  25. 25.

    Goossens, S. et al. Evidence for a low bulk crustal density for Mars from gravity and topography. Geophys. Res. Lett. 44, 7686–7694 (2017).

  26. 26.

    Condie, K. C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem. Geol. 104, 1–37 (1993).

  27. 27.

    Johansen, A., Mac Low, M. M., Lacerda, P. & Bizzarro, M. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Sci. Adv. 1, e1500109 (2015).

  28. 28.

    Bollard, J. et al. Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Sci. Adv. 3, e1700407 (2017).

  29. 29.

    Mezger, K., Debaille, V. & Kleine, T. Core formation and mantle differentiation on Mars. Space Sci. Rev. 174, 27–48 (2013).

  30. 30.

    Söderlund, U., Patchett, P. J., Vervoort, J. D. & Isachsen, C. E. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 219, 311–324 (2004).

  31. 31.

    Connelly, J. N. et al. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651–655 (2012).

  32. 32.

    Mattinson, J. M. et al. Zircon U-Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 220, 47–66 (2005).

  33. 33.

    Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A. & Parrish, R. R. Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochim. Cosmochim. Acta 164, 464–480 (2015).

  34. 34.

    Krogh, T. E. A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination. Geochim. Cosmochim. Acta 37, 485–494 (1973).

  35. 35.

    Corfu, F. U–Pb age, setting and tectonic significance of the anorthosite–mangerite–charnockite–granite suite, Lofoten-Vesterålen, Norway. J. Petrol. 56, 2081–2097 (2004).

  36. 36.

    Gerstenberger, H. & Haase, G. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 136, 309–312 (1997).

  37. 37.

    Bellucci, J. J. et al. Pb-isotopic evidence for an early, enriched crust on Mars. Earth Planet. Sci. Lett. 410, 34–41 (2015).

  38. 38.

    Steiger, R. H. & Jager, E. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett. 36, 359–362 (1977).

  39. 39.

    Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. & Essling, A. M. Precision measurement of half-lives and specific of 235U and 238U. Phys. Rev. C 4, 1889–1906 (1971).

  40. 40.

    Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 2508–2518 (2011).

  41. 41.

    Wiedenbeck, M. et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Newsl. 19, 1–23 (1995).

  42. 42.

    Blichert-Toft, J. Hf isotopic composition of zircon reference material 91500. Chem. Geol. 253, 252–257 (2008).

Download references


Financial support for this project was provided by the Danish National Research Foundation (DNRF97) and the European Research Council (ERC Consolidator Grant Agreement 616027, STARDUST2ASTEROIDS) to M.B. We thank J. Frydenvang and K. Kinch for discussions.

Reviewer information

Nature thanks A. Brandon and L. Elkins-Tanton for their contribution to the peer review of this work.

Author information

Author notes

  1. These authors contributed equally: Laura C. Bouvier, Maria M. Costa.


  1. Centre for Star and Planet Formation and Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark

    • Laura C. Bouvier
    • , Maria M. Costa
    • , James N. Connelly
    • , Ninna K. Jensen
    •  & Martin Bizzarro
  2. Quadlab and Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark

    • Daniel Wielandt
    •  & Michael Storey
  3. Department of Applied Geology, Curtin University, Perth, Western Australia, Australia

    • Alexander A. Nemchin
  4. Swedish Museum of Natural History, Stockholm, Sweden

    • Martin J. Whitehouse
    • , Joshua F. Snape
    •  & Jeremy J. Bellucci
  5. Institut de Physique du Globe de Paris, Université Paris Diderot, Sorbonne Paris Cité, Paris, France

    • Frédéric Moynier
  6. Laboratoire Géosciences Océan (UMR CNRS 6538), Université de Bretagne Occidentale et Institut Universitaire Européen de la Mer, Plouzané, France

    • Arnaud Agranier
    •  & Bleuenn Gueguen
  7. Institute of Geochemistry and Petrology, ETH, Zurich, Switzerland

    • Maria Schönbächler


  1. Search for Laura C. Bouvier in:

  2. Search for Maria M. Costa in:

  3. Search for James N. Connelly in:

  4. Search for Ninna K. Jensen in:

  5. Search for Daniel Wielandt in:

  6. Search for Michael Storey in:

  7. Search for Alexander A. Nemchin in:

  8. Search for Martin J. Whitehouse in:

  9. Search for Joshua F. Snape in:

  10. Search for Jeremy J. Bellucci in:

  11. Search for Frédéric Moynier in:

  12. Search for Arnaud Agranier in:

  13. Search for Bleuenn Gueguen in:

  14. Search for Maria Schönbächler in:

  15. Search for Martin Bizzarro in:


M.B. designed and led the research project. M.M.C. and J.N.C. identified and separated the zircons and performed analytical work related to the U–Pb isotope systematics of the zircons. L.C.B., J.N.C. and M.B. performed analytical work related to the 176Lu–176Hf systematics of the zircons. N.K.J., D.W., M.S., M.J.W., J.F.S., J.J.B., A.A.N., F.M., A.A. and B.G. assisted in sample preparation and zircon identification. All authors participated in the interpretation of the data. The manuscript was written by L.C.B., M.M.C., J.N.C. and M.B.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Martin Bizzarro.

Extended data figures and tables

  1. Extended Data Fig. 1 Photomicrographs of the NWA 7034 zircons analysed in this study taken under natural light.

    Given the small size and limited number of zircons recovered from the crushing process, we considered it to be preferable not to conduct additional imaging (using cathodoluminescence) because this necessitates extra manipulation of the individual grains, thereby increasing the risk of losing zircons. The fact that the zircons have mostly concordant U–Pb ages confirms their simple igneous history and, therefore, additional imaging to investigate potential zoning is not required here.

Supplementary information

  1. Supplementary Table 1

    U-Pb isotope data for NWA 7034 zircons.

Source Data

About this article

Publication history







By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.