Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic and biological drivers of prostate cancer disparities in Black men

Abstract

Black men with prostate cancer have historically had worse outcomes than white men with prostate cancer. The causes of this disparity in outcomes are multi-factorial, but a potential basis is that prostate cancers in Black men are biologically distinct from prostate cancers in white men. Evidence suggests that genetic and ancestral factors, molecular pathways involving androgen and non-androgen receptor signalling, inflammation, epigenetics, the tumour microenvironment and tumour metabolism are contributing factors to the racial disparities observed. Key genetic and molecular pathways linked to prostate cancer risk and aggressiveness have potential clinical relevance. Describing biological drivers of prostate cancer disparities could inform efforts to improve outcomes for Black men with prostate cancer.

Key points

  • Black men have higher rates of prostate cancer and more aggressive disease than white men.

  • Black men have biologically distinct prostate cancers from white men, including genetic alterations, protein differences, tumour microenvironment, and even circulating hormones and vitamins that might contribute to the differing phenotype of prostate cancers from Black men compared with white men.

  • Socioeconomic status has an important role in the disparities in prostate cancer seen in Black men compared with white men, but it does not fully explain the differences.

  • The biological differences between prostate cancers from Black men and white men could provide targets for therapies and precision medicine for Black men that can aid in addressing disparities in treatment outcomes between the two groups.

  • More research focused on Black men to elucidate how these biological differences can be used to develop targeted treatments, including increased clinical trial participation, is needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Racial differences in environmental risk factors, genetics and therapy access lead to disparity in response.
Fig. 2: Differential drivers of carcinogenesis and therapy sensitivity in Black men with prostate cancer.

Similar content being viewed by others

References

  1. Wang, L. et al. Prostate cancer incidence and mortality: global status and temporal trends in 89 countries from 2000 to 2019. Front. Public. Health 10, 811044 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).

    Article  PubMed  Google Scholar 

  3. Giaquinto, A. N. et al. Cancer statistics for African American/Black People 2022. CA Cancer J. Clin. https://doi.org/10.3322/caac.21718 (2022).

    Article  PubMed  Google Scholar 

  4. Chowdhury-Paulino, I. M. et al. Racial disparities in prostate cancer among black men: epidemiology and outcomes. Prostate Cancer Prostatic Dis. 25, 397–402 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Conti, D. V. et al. Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nat. Genet. 53, 65–75 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moses, K. A., Orom, H., Brasel, A., Gaddy, J. & Underwood, W. III Racial/ethnic disparity in treatment for prostate cancer: does cancer severity matter? Urology 99, 76–83 (2017).

    Article  PubMed  Google Scholar 

  7. Schwartz, K. et al. Interplay of race, socioeconomic status, and treatment on survival of patients with prostate cancer. Urology 74, 1296–1302 (2009).

    Article  PubMed  Google Scholar 

  8. Odedina, F. T. et al. Prostate cancer disparities in black men of African descent: a comparative literature review of prostate cancer burden among black men in the United States, Caribbean, United Kingdom, and West Africa. Infect. Agent. Cancer 4, S2 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Powell, I. J., Bock, C. H., Ruterbusch, J. J. & Sakr, W. Evidence supports a faster growth rate and/or earlier transformation to clinically significant prostate cancer in black than in white American men, and influences racial progression and mortality disparity. J. Urol. 183, 1792–1796 (2010).

    Article  PubMed  Google Scholar 

  10. Thompson, I. et al. Association of African-American ethnic background with survival in men with metastatic prostate cancer. J. Natl Cancer Inst. 93, 219–225 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Hoffman, R. M. et al. Racial and ethnic differences in advanced-stage prostate cancer: the Prostate Cancer Outcomes Study. J. Natl Cancer Inst. 93, 388–395 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Du, X. L. et al. Racial disparity and socioeconomic status in association with survival in older men with local/regional stage prostate carcinoma: findings from a large community-based cohort. Cancer 106, 1276–1285 (2006).

    Article  PubMed  Google Scholar 

  13. Moul, J. W. et al. Prostate-specific antigen values at the time of prostate cancer diagnosis African-American men. JAMA 274, 1277–1281 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Tiguert, R. et al. Racial differences and prognostic significance of tumor location in radical prostatectomy specimens. Prostate 37, 230–235 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Sundi, D. et al. Pathological examination of radical prostatectomy specimens in men with very low risk disease at biopsy reveals distinct zonal distribution of cancer in black American men. J. Urol. 191, 60–67 (2014).

    Article  PubMed  Google Scholar 

  16. Tsodikov, A. et al. Is prostate cancer different in black men? Answers from 3 natural history models. Cancer 123, 2312–2319 (2017).

    Article  PubMed  Google Scholar 

  17. Darst, B. F. et al. A rare germline HOXB13 variant contributes to risk of prostate cancer in men of African ancestry. Eur. Urol. 81, 458–462 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Darst, B. F. et al. A germline variant at 8q24 contributes to familial clustering of prostate cancer in men of African ancestry. Eur. Urol. 78, 316–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Okobia, M. N., Zmuda, J. M., Ferrell, R. E., Patrick, A. L. & Bunker, C. H. Chromosome 8q24 variants are associated with prostate cancer risk in a high risk population of African ancestry. Prostate 71, 1054–1063 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bock, C. H. et al. Results from a prostate cancer admixture mapping study in African-American men. Hum. Genet. 126, 637–642 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Han, D. et al. Susceptibility-associated genetic variation in NEDD9 contributes to prostate cancer initiation and progression. Cancer Res. 81, 3766–3776 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Conti, D. V. et al. Two novel susceptibility loci for prostate cancer in men of African ancestry. J. Natl Cancer Inst. 109, djx084 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bonilla, C., Hooker, S., Mason, T., Bock, C. H. & Kittles, R. A. Prostate cancer susceptibility loci identified on chromosome 12 in African Americans. PLoS ONE 6, e16044 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ricks-Santi, L. et al. p53 Pro72Arg polymorphism and prostate cancer in men of African descent. Prostate 70, 1739–1745 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Taioli, E. et al. Multi-institutional prostate cancer study of genetic susceptibility in populations of African descent. Carcinogenesis 32, 1361–1365 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Han, Y. et al. Prostate cancer susceptibility in men of African ancestry at 8q24. J. Natl Cancer Inst. 108, djv431 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Barnabas, N., Xu, L., Savera, A., Hou, Z. & Barrack, E. R. Chromosome 8 markers of metastatic prostate cancer in African American men: gain of the MIR151 gene and loss of the NKX3-1 gene. Prostate 71, 857–871 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Robbins, C. et al. Confirmation study of prostate cancer risk variants at 8q24 in African Americans identifies a novel risk locus. Genome Res. 17, 1717–1722 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Amundadottir, L. T. et al. A common variant associated with prostate cancer in European and African populations. Nat. Genet. 38, 652–658 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Freedman, M. L. et al. Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc. Natl Acad. Sci. USA 103, 14068–14073 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Haiman, C. A. et al. Characterizing genetic risk at known prostate cancer susceptibility loci in African Americans. PLoS Genet. 7, e1001387 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Haiman, C. A. et al. Multiple regions within 8q24 independently affect risk for prostate cancer. Nat. Genet. 39, 638–644 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Han, Y. et al. Generalizability of established prostate cancer risk variants in men of African ancestry. Int. J. Cancer 136, 1210–1217 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Walavalkar, K. et al. A rare variant of African ancestry activates 8q24 lncRNA hub by modulating cancer associated enhancer. Nat. Commun. 11, 3598 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Giorgi, E. E. et al. Fine-mapping IGF1 and prostate cancer risk in African Americans: the multiethnic cohort study. Cancer Epidemiol. Biomark. Prev. 23, 1928–1932 (2014).

    Article  CAS  Google Scholar 

  36. Clark, A. S., West, K., Streicher, S. & Dennis, P. A. Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol. Cancer Ther. 1, 707–717 (2002).

    CAS  PubMed  Google Scholar 

  37. Faridi, J., Wang, L., Endemann, G. & Roth, R. A. Expression of constitutively active Akt-3 in MCF-7 breast cancer cells reverses the estrogen and tamoxifen responsivity of these cells in vivo. Clin. Cancer Res. 9, 2933–2939 (2003).

    CAS  PubMed  Google Scholar 

  38. Yadav, S. et al. Somatic mutations in the DNA repairome in prostate cancers in African Americans and Caucasians. Oncogene 39, 4299–4311 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yadav, S. et al. Contribution of inherited DNA-Repair gene mutations to hormone-sensitive and castrate-resistant metastatic prostate cancer and implications for clinical outcome. JCO Precis. Oncol. https://doi.org/10.1200/po.19.00067 (2019).

  40. Chen, Z. et al. Diverse AR-V7 cistromes in castration-resistant prostate cancer are governed by HoxB13. Proc. Natl Acad. Sci. USA 115, 6810–6815 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ye, S. et al. Clinical characterization of mismatch repair gene-deficient metastatic castration-resistant prostate cancer. Front. Oncol. 10, 533282 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Norris, J. D. et al. The homeodomain protein HOXB13 regulates the cellular response to androgens. Mol. Cell 36, 405–416 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pomerantz, M. M. et al. The androgen receptor cistrome is extensively reprogrammed in human prostate tumorigenesis. Nat. Genet. 47, 1346–1351 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Na, R. et al. The HOXB13 variant X285K is associated with clinical significance and early age at diagnosis in African American prostate cancer patients. Br. J. Cancer 126, 791–796 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Plym, A. et al. DNA repair pathways and their association with lethal prostate cancer in African American and European American men. JNCI Cancer Spectr. 6, pkab097 (2022).

    Article  PubMed  Google Scholar 

  46. Krieger, K. L. et al. Repair-assisted damage detection reveals biological disparities in prostate cancer between African Americans and European Americans. Cancers 14, 1012 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ledet, E. M. et al. Comparison of germline mutations in African American and Caucasian men with metastatic prostate cancer. Prostate 81, 433–439 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Petrovics, G. et al. Increased frequency of germline BRCA2 mutations associates with prostate cancer metastasis in a racially diverse patient population. Prostate Cancer Prostatic Dis. 22, 406–410 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Southey, M. C. et al. PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS. J. Med. Genet. 53, 800–811 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Kaufman, B. et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J. Clin. Oncol. 33, 244–250 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Fong, P. C. et al. Inhibition of poly(ADP-Ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Mateo, J. et al. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 373, 1697–1708 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mateo, J. et al. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 21, 162–174 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hussain, M. et al. Survival with olaparib in metastatic castration-resistant prostate cancer. N. Engl. J. Med. 383, 2345–2357 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Clarke, N. et al. Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 19, 975–986 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Karzai, F. et al. Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations. J. Immunother. Cancer 6, 141 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yu, E. Y. et al. Pembrolizumab plus olaparib in patients with metastatic castration-resistant prostate cancer: long-term results from the phase 1b/2 KEYNOTE-365 cohort a study. Eur. Urol. 83, 15–26 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Harlemon, M. et al. A custom genotyping array reveals population-level heterogeneity for the genetic risks of prostate cancer and other cancers in Africa. Cancer Res. 80, 2956–2966 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, W., Nicholson, T. & Zhang, K. Deciphering the polygenic basis of racial disparities in prostate cancer by an integrative analysis of genomic and transcriptomic data. Cancer Prev. Res. 15, 161–171 (2022).

    Article  CAS  Google Scholar 

  60. Pagadala, M. S. et al. Polygenic risk of any, metastatic, and fatal prostate cancer in the Million Veteran Program. J. Natl Cancer Inst. 115, 190–199 (2023).

    Article  PubMed  Google Scholar 

  61. Kittles, R. A. et al. A common nonsense mutation in EphB2 is associated with prostate cancer risk in African American men with a positive family history. J. Med. Genet. 43, 507–511 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Robbins, C. M., Hooker, S., Kittles, R. A. & Carpten, J. D. EphB2 SNPs and sporadic prostate cancer risk in African American men. PLoS ONE 6, e19494 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ruan, X., Huang, D., Huang, J., Xu, D. & Na, R. Application of European-specific polygenic risk scores for predicting prostate cancer risk in different ancestry populations. Prostate 83, 30–38 (2023).

    Article  PubMed  Google Scholar 

  64. Adeloye, D. et al. An estimate of the incidence of prostate cancer in Africa: a systematic review and meta-analysis. PLoS ONE 11, e0153496 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Huggins, C. & Hodges, C. V. Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. CA Cancer J. Clin. 22, 232–240 (1972).

    Article  CAS  PubMed  Google Scholar 

  66. Weischenfeldt, J. et al. Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer. Cancer Cell 23, 159–170 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Kim, H. S. et al. Prostate biopsies from black men express higher levels of aggressive disease biomarkers than prostate biopsies from white men. Prostate Cancer Prostatic Dis. 14, 262–265 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Gaston, K. E., Kim, D., Singh, S., Ford, O. H. 3rd & Mohler, J. L. Racial differences in androgen receptor protein expression in men with clinically localized prostate cancer. J. Urol. 170, 990–993 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Wang, B. D. et al. Androgen receptor-target genes in African American prostate cancer disparities. Prostate Cancer 2013, 763569 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Berchuck, J. E. et al. The prostate cancer androgen receptor cistrome in African American men associates with upregulation of lipid metabolism and immune response. Cancer Res. 82, 2848–2859 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li, Y. et al. Regulation of a novel androgen receptor target gene, the cyclin B1 gene, through androgen-dependent E2F family member switching. Mol. Cell Biol. 32, 2454–2466 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wikström, P., Marusic, J., Stattin, P. & Bergh, A. Low stroma androgen receptor level in normal and tumor prostate tissue is related to poor outcome in prostate cancer patients. Prostate 69, 799–809 (2009).

    Article  PubMed  Google Scholar 

  73. Olapade-Olaopa, E. O. et al. Malignant transformation of human prostatic epithelium is associated with the loss of androgen receptor immunoreactivity in the surrounding stroma. Clin. Cancer Res. 5, 569–576 (1999).

    CAS  PubMed  Google Scholar 

  74. Li, Y. et al. Decrease in stromal androgen receptor associates with androgen-independent disease and promotes prostate cancer cell proliferation and invasion. J. Cell Mol. Med. 12, 2790–2798 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Koochekpour, S. et al. Androgen receptor mutations and polymorphisms in African American prostate cancer. Int. J. Biol. Sci. 10, 643–651 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zaman, N. et al. Proteomic-coupled-network analysis of T877A-androgen receptor interactomes can predict clinical prostate cancer outcomes between white (non-Hispanic) and African-American groups. PLoS ONE 9, e113190 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bennett, C. L. et al. Racial variation in CAG repeat lengths within the androgen receptor gene among prostate cancer patients of lower socioeconomic status. J. Clin. Oncol. 20, 3599–3604 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Powell, I. J. et al. The impact of CAG repeats in exon 1 of the androgen receptor on disease progression after prostatectomy. Cancer 103, 528–537 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Lange, E. M. et al. The androgen receptor CAG and GGN repeat polymorphisms and prostate cancer susceptibility in African-American men: results from the Flint Men’s Health Study. J. Hum. Genet. 53, 220–226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zeegers, M. P., Kiemeney, L. A., Nieder, A. M. & Ostrer, H. How strong is the association between CAG and GGN repeat length polymorphisms in the androgen receptor gene and prostate cancer risk? Cancer Epidemiol. Biomark. Prev. 13, 1765–1771 (2004).

    Article  CAS  Google Scholar 

  81. Akinloye, O., Gromoll, J. & Simoni, M. Variation in CAG and GGN repeat lengths and CAG/GGN haplotype in androgen receptor gene polymorphism and prostate carcinoma in Nigerians. Br. J. Biomed. Sci. 68, 138–142 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Lunn, R. M., Bell, D. A., Mohler, J. L. & Taylor, J. A. Prostate cancer risk and polymorphism in 17 hydroxylase (CYP17) and steroid reductase (SRD5A2). Carcinogenesis 20, 1727–1731 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Wang, F., Zou, Y. F., Feng, X. L., Su, H. & Huang, F. CYP17 gene polymorphisms and prostate cancer risk: a meta-analysis based on 38 independent studies. Prostate 71, 1167–1177 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Liu, W., Liu, R. & Wang, L. Androgen metabolism genes in prostate cancer health disparities. Cancer Health Disparities 1, e1–e6 (2017).

    PubMed  PubMed Central  Google Scholar 

  85. Shiina, M. et al. Differential expression of miR-34b and androgen receptor pathway regulate prostate cancer aggressiveness between African-Americans and Caucasians. Oncotarget 8, 8356–8368 (2017).

    Article  PubMed  Google Scholar 

  86. Theodore, S. C., Rhim, J. S., Turner, T. & Yates, C. MiRNA 26a expression in a novel panel of African American prostate cancer cell lines. Ethn. Dis. 20, 96–100 (2010).

    Google Scholar 

  87. Yang, Y. et al. Dysregulation of miR-212 promotes castration resistance through hnRNPH1-mediated regulation of AR and AR-V7: implications for racial disparity of prostate cancer. Clin. Cancer Res. 22, 1744–1756 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Caruso, R. P. et al. Altered N-myc downstream-regulated gene 1 protein expression in African-American compared with Caucasian prostate cancer patients. Clin. Cancer Res. 10, 222–227 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Kobayashi, A. et al. Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J. Exp. Med. 208, 2641–2655 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chang, C. A. et al. Ontogeny and vulnerabilities of drug-tolerant persisters in HER2+ breast cancer. Cancer Discov. 12, 1022–1045 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang, Z. et al. Loss of CHD1 promotes heterogeneous mechanisms of resistance to AR-targeted therapy via chromatin dysregulation. Cancer Cell 37, 584–598.e511 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lim, S. C., Geleta, B., Maleki, S., Richardson, D. R. & Kovačević, Ž. The metastasis suppressor NDRG1 directly regulates androgen receptor signaling in prostate cancer. J. Biol. Chem. 297, 101414 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ross, R. et al. Serum testosterone levels in healthy young black and white men. J. Natl Cancer Inst. 76, 45–48 (1986).

    CAS  PubMed  Google Scholar 

  94. Hsing, A. W. & Comstock, G. W. Serological precursors of cancer: serum hormones and risk of subsequent prostate cancer. Cancer Epidemiol. Biomark. Prev. 2, 27–32 (1993).

    CAS  Google Scholar 

  95. Wu, A. H. et al. Serum androgens and sex hormone-binding globulins in relation to lifestyle factors in older African-American, white, and Asian men in the United States and Canada. Cancer Epidemiol. Biomark. Prev. 4, 735–741 (1995).

    CAS  Google Scholar 

  96. Vidal, A. C. et al. Asian race and risk of prostate cancer: results from the REDUCE Study. Cancer Epidemiol. Biomark. Prev. 29, 2165–2170 (2020).

    Article  CAS  Google Scholar 

  97. Massengill, J. C. et al. Pretreatment total testosterone level predicts pathological stage in patients with localized prostate cancer treated with radical prostatectomy. J. Urol. 169, 1670–1675 (2003).

    Article  PubMed  Google Scholar 

  98. Ross, R. K. et al. 5-alpha-reductase activity and risk of prostate cancer among Japanese and US white and black males. Lancet 339, 887–889 (1992).

    Article  CAS  PubMed  Google Scholar 

  99. Mahal, B. A. et al. Racial differences in genomic profiling of prostate cancer. N. Engl. J. Med. 383, 1083–1085 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Rose, A. E. et al. Copy number and gene expression differences between African American and Caucasian American prostate cancer. J. Transl. Med. 8, 70 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Liu, W. et al. Distinct genomic alterations in prostate tumors derived from African American men. Mol. Cancer Res. 18, 1815–1824 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Lindquist, K. J. et al. Mutational landscape of aggressive prostate tumors in African American men. Cancer Res. 76, 1860–1868 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yuan, J. et al. Integrative comparison of the genomic and transcriptomic landscape between prostate cancer patients of predominantly African or European genetic ancestry. PLoS Genet. 16, e1008641 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ali, H. E. A. et al. Dysregulated gene expression predicts tumor aggressiveness in African-American prostate cancer patients. Sci. Rep. 8, 16335 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Powell, I. J. et al. Genes associated with prostate cancer are differentially expressed in African American and European American men. Cancer Epidemiol. Biomark. Prev. 22, 891–897 (2013).

    Article  CAS  Google Scholar 

  106. Khani, F. et al. Evidence for molecular differences in prostate cancer between African American and Caucasian men. Clin. Cancer Res. 20, 4925–4934 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang, B., Yao, K. & Cheng, C. A network-based integration for understanding racial disparity in prostate cancer. Transl. Oncol. 17, 101327 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Reams, R. R. et al. Microarray comparison of prostate tumor gene expression in African-American and Caucasian American males: a pilot project study. Infect. Agent. Cancer 4, S3 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Wang, B. D. et al. Alternative splicing promotes tumour aggressiveness and drug resistance in African American prostate cancer. Nat. Commun. 8, 15921 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Olender, J. et al. A novel FGFR3 splice variant preferentially expressed in African American prostate cancer drives aggressive phenotypes and docetaxel resistance. Mol. Cancer Res. 17, 2115–2125 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ha, S. & Wang, B.-D. Molecular insight into drug resistance mechanism conferred by aberrant PIK3CD splice variant in African American prostate cancer. Cancers 15, 1337 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang, Y. et al. Associations between RNA splicing regulatory variants of stemness-related genes and racial disparities in susceptibility to prostate cancer. Int. J. Cancer 141, 731–743 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. George, D. J. et al. A prospective trial of abiraterone acetate plus prednisone in black and white men with metastatic castrate-resistant prostate cancer. Cancer 127, 2954–2965 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Castro, P. et al. Genomic profiling of prostate cancers from African American men. Neoplasia 11, 305–312 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Reams, R. R. et al. Detecting gene-gene interactions in prostate disease in African American men. Infect. Agent. Cancer 6, S1 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Koga, Y. et al. Genomic profiling of prostate cancers from men with African and European ancestry. Clin. Cancer Res. 26, 4651–4660 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tosoian, J. J. et al. Prevalence and prognostic significance of PTEN loss in African-American and European-American men undergoing radical prostatectomy. Eur. Urol. 71, 697–700 (2017).

    Article  PubMed  Google Scholar 

  118. Troutman, S. M. et al. Racial disparities in the association between variants on 8q24 and prostate cancer: a systematic review and meta-analysis. Oncologist 17, 312–320 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Blackburn, J. et al. TMPRSS2-ERG fusions linked to prostate cancer racial health disparities: a focus on Africa. Prostate 79, 1191–1196 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Magi-Galluzzi, C. et al. TMPRSS2-ERG gene fusion prevalence and class are significantly different in prostate cancer of Caucasian, African-American and Japanese patients. Prostate 71, 489–497 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Rosen, P. et al. Differences in frequency of ERG oncoprotein expression between index tumors of Caucasian and African American patients with prostate cancer. Urology 80, 749–753 (2012).

    Article  PubMed  Google Scholar 

  122. Farrell, J. et al. Predominance of ERG-negative high-grade prostate cancers in African American men. Mol. Clin. Oncol. 2, 982–986 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Yates, C., Long, M. D., Campbell, M. J. & Sucheston-Campbell, L. miRNAs as drivers of TMPRSS2-ERG negative prostate tumors in African American men. Front. Biosci. 22, 212–229 (2017).

    Article  CAS  Google Scholar 

  124. Faisal, F. A. et al. Racial variations in prostate cancer molecular subtypes and androgen receptor signaling reflect anatomic tumor location. Eur. Urol. 70, 14–17 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Huang, F. W. et al. Exome sequencing of African-American prostate cancer reveals loss-of-function ERF mutations. Cancer Discov. 7, 973–983 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. García-Flores, M. et al. Clinico-pathological significance of the molecular alterations of the SPOP gene in prostate cancer. Eur. J. Cancer 50, 2994–3002 (2014).

    Article  PubMed  Google Scholar 

  127. Sweeney, C. et al. Ipatasertib plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer (IPATential150): a multicentre, randomised, double-blind, phase 3 trial. Lancet 398, 131–142 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Stopsack, K. H. et al. Differences in prostate cancer genomes by self-reported race: contributions of genetic ancestry, modifiable cancer risk factors, and clinical factors. Clin. Cancer Res. 28, 318–326 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Chernoff, J. The two-hit theory hits 50. Mol. Biol. Cell 32, rt1 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jaratlerdsiri, W. et al. Whole-genome sequencing reveals elevated tumor mutational burden and initiating driver mutations in African men with treatment-naïve, high-risk prostate cancer. Cancer Res. 78, 6736–6746 (2018).

    Article  CAS  PubMed  Google Scholar 

  131. Liu, W. et al. A CD24-p53 axis contributes to African American prostate cancer disparities. Prostate 80, 609–618 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Elliott, B. et al. Ethnic differences in TGFβ-signaling pathway may contribute to prostate cancer health disparity. Carcinogenesis 39, 546–555 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang, L. et al. MNX1 is oncogenically upregulated in African-American prostate cancer. Cancer Res. 76, 6290–6298 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Vidal, I. et al. GSTP1 positive prostatic adenocarcinomas are more common in black than white men in the United States. PLoS ONE 16, e0241934 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Reams, R. R. et al. Immunohistological analysis of ABCD3 expression in Caucasian and African American prostate tumors. Biomed. Res. Int. 2015, 132981 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Ferrari, M. G. et al. Identifying and treating ROBO1(-ve) /DOCK1(+ve) prostate cancer: an aggressive cancer subtype prevalent in African American patients. Prostate 80, 1045–1057 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Parray, A. et al. ROBO1, a tumor suppressor and critical molecular barrier for localized tumor cells to acquire invasive phenotype: study in African-American and Caucasian prostate cancer models. Int. J. Cancer 135, 2493–2506 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Timofeeva, O. A. et al. Enhanced expression of SOS1 is detected in prostate cancer epithelial cells from African-American men. Int. J. Oncol. 35, 751–760 (2009).

    CAS  PubMed  Google Scholar 

  139. Ganaie, A. A. et al. BMI1 drives metastasis of prostate cancer in Caucasian and African-American men and is a potential therapeutic target: hypothesis tested in race-specific models. Clin. Cancer Res. 24, 6421–6432 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wang, Y. et al. RGS12 is a novel tumor-suppressor gene in African American prostate cancer that represses AKT and MNX1 expression. Cancer Res. 77, 4247–4257 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wang, G. et al. MDM2 expression and regulation in prostate cancer racial disparity. Int. J. Clin. Exp. Pathol. 2, 353–360 (2009).

    CAS  PubMed  Google Scholar 

  142. Yamoah, K. et al. Prostate tumors of native men from West Africa show biologically distinct pathways — A comparative genomic study. Prostate 81, 1402–1410 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wallace, T. A. et al. Tumor immunobiological differences in prostate cancer between African-American and European-American men. Cancer Res. 68, 927–936 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Awasthi, S. et al. Comparative genomics reveals distinct immune-oncologic pathways in African American men with prostate cancer. Clin. Cancer Res. 27, 320–329 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Rayford, W. et al. Comparative analysis of 1152 African-American and European-American men with prostate cancer identifies distinct genomic and immunological differences. Commun. Biol. 4, 670 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Eastham, J. A. et al. Clinical characteristics and biopsy specimen features in African-American and white men without prostate cancer. J. Natl Cancer Inst. 90, 756–760 (1998).

    Article  CAS  PubMed  Google Scholar 

  147. Maynard, J. P. et al. Localization of macrophage subtypes and neutrophils in the prostate tumor microenvironment and their association with prostate cancer racial disparities. Prostate 82, 1505–1519 (2022).

    Article  CAS  PubMed  Google Scholar 

  148. Rybicki, B. A. et al. Racial differences in the relationship between clinical prostatitis, presence of inflammation in benign prostate and subsequent risk of prostate cancer. Prostate Cancer Prostatic Dis. 19, 145–150 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Rundle, A. G. et al. Racial differences in the systemic inflammatory response to prostate cancer. PLoS ONE 16, e0252951 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Vidotto, T. et al. Association of self-identified race and genetic ancestry with the immunogenomic landscape of primary prostate cancer. JCI Insight 8, e162409 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Chen, Y. et al. Breast and prostate cancers harbor common somatic copy number alterations that consistently differ by race and are associated with survival. BMC Med. Genomics 13, 116 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Powell, I. J., Chinni, S. R., Reddy, S. S., Zaslavsky, A. & Gavande, N. Pro-inflammatory cytokines and chemokines initiate multiple prostate cancer biologic pathways of cellular proliferation, heterogeneity and metastasis in a racially diverse population and underlie the genetic/biologic mechanism of racial disparity: update. Urol. Oncol. 39, 34–40 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. Teslow, E. A. et al. Exogenous IL-6 induces mRNA splice variant MBD2_v2 to promote stemness in TP53 wild-type, African American PCa cells. Mol. Oncol. 12, 1138–1152 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mandal, S., Abebe, F. & Chaudhary, J. 174G/C polymorphism in the interleukin-6 promoter is differently associated with prostate cancer incidence depending on race. Genet. Mol. Res. 13, 139–151 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hardiman, G. et al. Systems analysis of the prostate transcriptome in African-American men compared with European-American men. Pharmacogenomics 17, 1129–1143 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hawley, J. E. et al. Analysis of circulating immune biomarkers by race in men with metastatic castration-resistant prostate cancer treated with sipuleucel-T. J. Natl Cancer Inst. 114, 314–317 (2022).

    Article  PubMed  Google Scholar 

  157. Sanchez, T. W. et al. Immunoseroproteomic profiling in African American men with prostate cancer: evidence for an autoantibody response to glycolysis and plasminogen-associated proteins. Mol. Cell Proteom. 15, 3564–3580 (2016).

    Article  CAS  Google Scholar 

  158. Dai, L. et al. Using serological proteome analysis to identify serum anti-nucleophosmin 1 autoantibody as a potential biomarker in European-American and African-American patients with prostate cancer. Prostate 76, 1375–1386 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Sakiyama, M. J. et al. Race-associated expression of MHC class I polypeptide-related sequence A (MICA) in prostate cancer. Exp. Mol. Pathol. 108, 173–182 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Vidal, A. C. et al. Racial differences in prostate inflammation: results from the REDUCE study. Oncotarget 8, 71393–71399 (2017).

    Article  PubMed  Google Scholar 

  161. Kinseth, M. A. et al. Expression differences between African American and Caucasian prostate cancer tissue reveals that stroma is the site of aggressive changes. Int. J. Cancer 134, 81–91 (2014).

    Article  PubMed  Google Scholar 

  162. Gillard, M. et al. Elevation of stromal-derived mediators of inflammation promote prostate cancer progression in African-American men. Cancer Res. 78, 6134–6145 (2018).

    Article  CAS  PubMed  Google Scholar 

  163. Sartor, O. et al. Survival of African-American and Caucasian men after sipuleucel-T immunotherapy: outcomes from the PROCEED registry. Prostate Cancer Prostatic Dis. 23, 517–526 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Weiner, A. B. et al. Plasma cells are enriched in localized prostate cancer in black men and are associated with improved outcomes. Nat. Commun. 12, 935 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Rai, R. et al. Epigenetic analysis identifies factors driving racial disparity in prostate cancer. Cancer Rep. 2, e1153 (2019).

    Article  Google Scholar 

  166. Kwabi-Addo, B. et al. Identification of differentially methylated genes in normal prostate tissues from African American and Caucasian men. Clin. Cancer Res. 16, 3539–3547 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Rubicz, R. et al. DNA methylation profiles in African American prostate cancer patients in relation to disease progression. Genomics 111, 10–16 (2019).

    Article  CAS  PubMed  Google Scholar 

  168. Devaney, J. M. et al. Genome-wide differentially methylated genes in prostate cancer tissues from African-American and Caucasian men. Epigenetics 10, 319–328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Apprey, V. et al. Association of genetic ancestry with DNA methylation changes in prostate cancer disparity. Anticancer. Res. 39, 5861–5866 (2019).

    Article  CAS  PubMed  Google Scholar 

  170. Woodson, K., Hayes, R., Wideroff, L., Villaruz, L. & Tangrea, J. Hypermethylation of GSTP1, CD44, and E-cadherin genes in prostate cancer among US blacks and whites. Prostate 55, 199–205 (2003).

    Article  CAS  PubMed  Google Scholar 

  171. Woodson, K., Hanson, J. & Tangrea, J. A survey of gene-specific methylation in human prostate cancer among black and white men. Cancer Lett. 205, 181–188 (2004).

    Article  CAS  PubMed  Google Scholar 

  172. Das, P. M. et al. Methylation mediated silencing of TMS1/ASC gene in prostate cancer. Mol. Cancer 5, 28 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Chaudhary, A. K. et al. Mitochondrial dysfunction-mediated apoptosis resistance associates with defective heat shock protein response in African-American men with prostate cancer. Br. J. Cancer 114, 1090–1100 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Koochekpour, S., Marlowe, T., Singh, K. K., Attwood, K. & Chandra, D. Reduced mitochondrial DNA content associates with poor prognosis of prostate cancer in African American men. PLoS ONE 8, e74688 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Xu, J. et al. Mitochondrial DNA copy number in peripheral blood leukocytes is associated with biochemical recurrence in prostate cancer patients in African Americans. Carcinogenesis 41, 267–273 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. Kumar, R. et al. Cytochrome c deficiency confers apoptosome and mitochondrial dysfunction in African-American men with prostate cancer. Cancer Res. 79, 1353–1368 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Scott, T. A., Arnold, R. & Petros, J. A. Mitochondrial cytochrome c oxidase subunit 1 sequence variation in prostate cancer. Scientifica 2012, 701810 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Gohlke, J. H. et al. Methionine-homocysteine pathway in African-American prostate cancer. JNCI Cancer Spectr. 3, pkz019 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Ramirez-Torres, A. et al. Racial differences in circulating mitochondria-derived peptides may contribute to prostate cancer health disparities. Prostate 82, 1248–1257 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Xiao, J. et al. Low circulating levels of the mitochondrial-peptide hormone SHLP2: novel biomarker for prostate cancer risk. Oncotarget 8, 94900–94909 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  181. McNally, E. J., Luncsford, P. J. & Armanios, M. Long telomeres and cancer risk: the price of cellular immortality. J. Clin. Invest. 129, 3474–3481 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Heaphy, C. M. et al. Prostate cancer cell telomere length variability and stromal cell telomere length as prognostic markers for metastasis and death. Cancer Discov. 3, 1130–1141 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Heaphy, C. M. et al. Racial difference in prostate cancer cell telomere lengths in men with higher grade prostate cancer: a clue to the racial disparity in prostate cancer outcomes. Cancer Epidemiol. Biomark. Prev. 29, 676–680 (2020).

    Article  Google Scholar 

  184. Vaziri, H. & Benchimol, S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol. 8, 279–282 (1998).

    Article  CAS  PubMed  Google Scholar 

  185. Rybicki, B. A. et al. Race differences in telomere length in benign prostate biopsies and subsequent risk of prostate cancer. Cancer Epidemiol. Biomark. Prev. 31, 991–998 (2022).

    Article  CAS  Google Scholar 

  186. Tsai, C. W. et al. Leukocyte telomere length is associated with aggressive prostate cancer in localized African American prostate cancer patients. Carcinogenesis 41, 1213–1218 (2020).

    Article  CAS  PubMed  Google Scholar 

  187. Khan, S. et al. Racial differences in the expression of inhibitors of apoptosis (IAP) proteins in extracellular vesicles (EV) from prostate cancer patients. PLoS ONE 12, e0183122 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  188. deVere White, R. W. et al. Racial differences in clinically localized prostate cancers of black and white men. J. Urol. 159, 1979–1982 (1998).

    Article  CAS  PubMed  Google Scholar 

  189. Steck, S. E. et al. Association between Plasma 25-Hydroxyvitamin D, ancestry and aggressive prostate cancer among African Americans and European Americans in PCaP. PLoS ONE 10, e0125151 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Abd Elmageed, Z. Y. et al. High circulating estrogens and selective expression of ERβ in prostate tumors of Americans: implications for racial disparity of prostate cancer. Carcinogenesis 34, 2017–2023 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Rohrmann, S. et al. Serum estrogen, but not testosterone, levels differ between black and white men in a nationally representative sample of Americans. J. Clin. Endocrinol. Metab. 92, 2519–2525 (2007).

    Article  CAS  PubMed  Google Scholar 

  192. Williams, D. R., Priest, N. & Anderson, N. B. Understanding associations among race, socioeconomic status, and health: patterns and prospects. Health Psychol. 35, 407–411 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Virolainen, S. J., VonHandorf, A., Viel, K., Weirauch, M. T. & Kottyan, L. C. Gene-environment interactions and their impact on human health. Genes. Immun. 24, 1–11 (2023).

    Article  PubMed  Google Scholar 

  194. Allen, L. et al. Socioeconomic status and non-communicable disease behavioural risk factors in low-income and lower-middle-income countries: a systematic review. Lancet Glob. Health 5, e277–e289 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Major, J. M. et al. Socioeconomic status, healthcare density, and risk of prostate cancer among African American and Caucasian men in a large prospective study. Cancer Causes Control. 23, 1185–1191 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Oates, G. R. et al. Sociodemographic patterns of chronic disease: how the mid-south region compares to the rest of the country. Am. J. Prev. Med. 52, S31–s39 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Tehranifar, P. et al. Early life socioeconomic factors and genomic DNA methylation in mid-life. Epigenetics 8, 23–27 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. McGuinness, D. et al. Socio-economic status is associated with epigenetic differences in the pSoBid cohort. Int. J. Epidemiol. 41, 151–160 (2012).

    Article  PubMed  Google Scholar 

  199. Muscatell, K. A., Brosso, S. N. & Humphreys, K. L. Socioeconomic status and inflammation: a meta-analysis. Mol. Psychiatry 25, 2189–2199 (2020).

    Article  PubMed  Google Scholar 

  200. Robinson, O. et al. Metabolic profiles of socio-economic position: a multi-cohort analysis. Int. J. Epidemiol. 50, 768–782 (2021).

    Article  PubMed  Google Scholar 

  201. Cheng, I. et al. Socioeconomic status and prostate cancer incidence and mortality rates among the diverse population of California. Cancer Causes Control. 20, 1431–1440 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Zeigler-Johnson, C. M., Tierney, A., Rebbeck, T. R. & Rundle, A. Prostate cancer severity associations with neighborhood deprivation. Prostate Cancer 2011, 846263 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Tomlins, S. A. et al. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 10, 177–188 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Perner, S. et al. TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res. 66, 8337–8341 (2006).

    Article  CAS  PubMed  Google Scholar 

  205. Song, C. & Chen, H. Predictive significance of TMRPSS2-ERG fusion in prostate cancer: a meta-analysis. Cancer Cell Int. 18, 177 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kensler, K. H. et al. Variation in molecularly defined prostate tumor subtypes by self-identified race. Eur. Urol. Open. Sci. 40, 19–26 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).

    Article  CAS  PubMed  Google Scholar 

  208. Di Cristofano, A. & Pandolfi, P. P. The multiple roles of PTEN in tumor suppression. Cell 100, 387–390 (2000).

    Article  PubMed  Google Scholar 

  209. Krohn, A. et al. Genomic deletion of PTEN is associated with tumor progression and early PSA recurrence in ERG fusion-positive and fusion-negative prostate cancer. Am. J. Pathol. 181, 401–412 (2012).

    Article  CAS  PubMed  Google Scholar 

  210. Nakazawa, M. et al. Clinical and genomic features of SPOP-mutant prostate cancer. Prostate 82, 260–268 (2022).

    Article  CAS  PubMed  Google Scholar 

  211. Shoag, J. et al. Prognostic value of the SPOP mutant genomic subclass in prostate cancer. Urol. Oncol. 38, 418–422 (2020).

    Article  CAS  PubMed  Google Scholar 

  212. Swami, U. et al. SPOP mutations as a predictive biomarker for androgen receptor axis-targeted therapy in de novo metastatic castration-sensitive prostate cancer. Clin. Cancer Res. 28, 4917–4925 (2022).

    Article  CAS  PubMed  Google Scholar 

  213. Ng, K., Wilson, P., Mutsvangwa, K., Hounsome, L. & Shamash, J. Overall survival of black and white men with metastatic castration-resistant prostate cancer (mCRPC): a 20-year retrospective analysis in the largest healthcare trust in England. Prostate Cancer Prostatic Dis. 24, 718–724 (2021).

    Article  PubMed  Google Scholar 

  214. Marar, M. et al. Outcomes among African American and non-Hispanic white men with metastatic castration-resistant prostate cancer with first-line abiraterone. JAMA Netw. Open. 5, e2142093 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Leongamornlert, D. et al. Frequent germline deleterious mutations in DNA repair genes in familial prostate cancer cases are associated with advanced disease. Br. J. Cancer 110, 1663–1672 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Pritchard, C. C. et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N. Engl. J. Med. 375, 443–453 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Gallagher, D. J. et al. Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin. Cancer Res. 16, 2115–2121 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Castro, E. et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J. Clin. Oncol. 31, 1748–1757 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Fizazi, K. et al. Rucaparib or physician’s choice in metastatic prostate cancer. N. Engl. J. Med. 388, 719–732 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Agarwal, N. et al. TALAPRO-2: phase 3 study of talazoparib (TALA) + enzalutamide (ENZA) versus placebo (PBO) + ENZA as first-line (1L) treatment in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 41, LBA17–LBA17 (2023).

    Article  Google Scholar 

  221. Chi, K. N. et al. Phase 3 MAGNITUDE study: first results of niraparib (NIRA) with abiraterone acetate and prednisone (AAP) as first-line therapy in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) with and without homologous recombination repair (HRR) gene alterations. J. Clin. Oncol. 40, 12–12 (2022).

    Article  Google Scholar 

  222. Clarke, N. W. et al. Abiraterone and olaparib for metastatic castration-resistant prostate cancer. NEJM Evid. 1, EVIDoa2200043 (2022).

    Article  Google Scholar 

  223. Minas, T. Z. et al. Serum proteomics links suppression of tumor immunity to ancestry and lethal prostate cancer. Nat. Commun. 13, 1759 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Halabi, S. et al. Overall survival of black and white men with metastatic castration-resistant prostate cancer treated with docetaxel. J. Clin. Oncol. 37, 403–410 (2019).

    Article  CAS  PubMed  Google Scholar 

  225. Vaishampayan, U. N. et al. Clinical efficacy of enzalutamide vs bicalutamide combined with androgen deprivation therapy in men with metastatic hormone-sensitive prostate cancer: a randomized clinical trial. JAMA Netw. Open. 4, e2034633 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Tangen, C. M. et al. Improved overall survival trends of men with newly diagnosed M1 prostate cancer: a SWOG phase III trial experience (S8494, S8894 and S9346). J. Urol. 188, 1164–1169 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Thatai, L. C., Banerjee, M., Lai, Z. & Vaishampayan, U. Racial disparity in clinical course and outcome of metastatic androgen-independent prostate cancer. Urology 64, 738–743 (2004).

    Article  PubMed  Google Scholar 

  228. Nelson, W. G. et al. Health inequity drives disease biology to create disparities in prostate cancer outcomes. J. Clin. Invest. 132, e155031 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Arenas-Gallo, C. et al. Race and prostate cancer: genomic landscape. Nat. Rev. Urol. 19, 547–561 (2022).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Prostate Cancer Foundation (2022 PCF Young Investigator Award to J.G.), Department of Defense (Health Disparity Research Award W81XWH-19-1-0748 to J.G.), and American Cancer Society (Research Scholar Grant RSG-18-018-01-CPHPS to J.G.).

Author information

Authors and Affiliations

Authors

Contributions

J.G. and D.M.K. researched data for the article. J.G., D.M.K. and S.J.F. contributed substantially to discussion of the content. All authors wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Jun Gong.

Ethics declarations

Competing interests

J.G.: consulting or advisory role — EMD Serono, Elsevier, Exelixis, QED Therapeutics, Natera, Basilea, HalioDx, Eisai, Janssen, Astellas and Amgen. D.T.: consulting or advisory role — Aurora Oncology, Machavert Pharmaceuticals, Merck and Urogen Pharma. E.P.: consulting or advisory role — CytoLumina, Genentech/Roche, Janssen Oncology, Janssen Oncology and Novartis; speakers’ bureau — Bayer; research funding — Pfizer; patents, royalties, other intellectual property — patent on NanoVelcro Assay for circulating tumour cells in prostate cancer; and travel, accommodations, expenses — TRACON Pharma. R.F.: leadership — 4Dx and Apollomics; consulting or advisory role — Bristol-Myers Squibb, CBT Pharmaceuticals and Johnson & Johnson; and research funding — Bristol-Myers Squibb (institution), Calithera Biosciences (institution), Exelixis (institution), Merck (institution) and Peloton Therapeutics (institution). N.B.: leadership — Kairos Pharma Lmt. and Armida Labs, Inc; consulting — TRACON Pharma, Cellgene and Xencor; research funding — Xencor. S.J.F.: consulting or advisory role — Merck, Astellas, AstraZeneca, Pfizer, Janssen, Bayer, Clovis, Sanofi, Myovant and Exact Sciences. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, J., Kim, D.M., Freeman, M.R. et al. Genetic and biological drivers of prostate cancer disparities in Black men. Nat Rev Urol (2023). https://doi.org/10.1038/s41585-023-00828-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41585-023-00828-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing