Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Effects of the environment on the evolution of the vertebrate urinary tract

Abstract

Evolution of the vertebrate urinary system occurs in response to numerous selective pressures, which have been incompletely characterized. Developing research into urinary evolution led to the occurrence of clinical applications and insights in paediatric urology, reproductive medicine, urolithiasis and other domains. Each nephron segment and urinary organ has functions that can be contextualized within an evolutionary framework. For example, the structure and function of the glomerulus and proximal tubule are highly conserved, enabling blood cells and proteins to be retained, and facilitating the elimination of oceanic Ca+ and Mg+. Urea emerged as an osmotic mediator during evolution, as cells of large organisms required increased precision in the internal regulation of salinity and solutes. As the first vertebrates moved from water to land, acid–base regulation was shifted from gills to skin and kidneys in amphibians. In reptiles and birds, solute regulation no longer occurred through the skin but through nasal salt glands and post-renally, within the cloaca and the rectum. In placental mammals, nasal salt glands are absent and the rectum and urinary tracts became separate, which limited post-renal urine concentration and led to the necessity of a kidney capable of high urine concentration. Considering the evolutionary and environmental selective pressures that have contributed to renal evolution can help to gain an increased understanding of renal physiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of a human nephron.
Fig. 2: The embryonic kidney.
Fig. 3: Phylogenetic tree of vertebrate nephron evolution.
Fig. 4: Structure of the tetrapod urinary system.

Similar content being viewed by others

References

  1. Smith, H. W. From Fish to Philosopher (Little, Brown, 1953).

  2. Lote, C. J. Principles of renal physiology. Princ. Renal Physiol. https://doi.org/10.1007/978-1-4614-3785-7 (2013).

    Article  Google Scholar 

  3. Dantzler, W. H. Comparative Physiology of the Vertebrate Kidney 2nd edn (Springer, 2016).

  4. Mescher, A. L. in Junqueira’s Basic Histology 14 edn (McGraw-Hill Education, 2016).

  5. Wiener, S., Chevalier, R. L., Ho, S. P. & Stoller, M. L. Jean Oliver: master of the nephron. Urology 144, 17–20 (2020).

    PubMed  Google Scholar 

  6. Oliver, J. Nephrons and Kidneys: A Quantitative Study of Developmental and Evolutionary Mammalian Renal Architectonics (Hoeber Medical Division, Harper & Row, 1966).

  7. McMahon, A. P. Development of the mammalian kidney. Curr. Top. Dev. Biol. 117, 31–64 (2016).

    PubMed  PubMed Central  Google Scholar 

  8. Wein, A. J., Kavoussi, L. R., Novick, A. C., Partin, A. W. & Peters, C. A. Campbell-Walsh Urology (Elsevier Health Sciences, 2011).

  9. Kardong, K. V. Vertebrates: Comparative Anatomy, Function, Evolution 8th edn (Heinle and Heinle Publishers, 2019).

  10. Pietilä, I. & Vainio, S. J. Kidney development: an overview. Nephron Exp. Nephrol. 126, 40 (2014).

    PubMed  Google Scholar 

  11. Little, M. H. (ed.) Kidney Development, Disease, Repair and Regeneration (Elsevier, 2016).

  12. Faa, G. & Fanos, V. (eds) Kidney Development in Renal Pathology (Springer, 2014).

  13. Chen, L. & Al-Awqati, Q. Segmental expression of Notch and Hairy genes in nephrogenesis. Am. J. Physiol. Renal Physiol. 288, F939–F952 (2005).

    CAS  PubMed  Google Scholar 

  14. Karner, C. M. et al. Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis. Nat. Genet. 41, 793–799 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Song, R., El-Dahr, S. S. & Yosypiv, I. V. Receptor tyrosine kinases in kidney development. J. Signal. Transduct. 2011, 1–10 (2011).

    Google Scholar 

  16. Bouchard, M., Souabni, A., Mandler, M., Neubüser, A. & Busslinger, M. Nephric lineage specification by Pax2 and Pax8. Genes Dev. 16, 2958–2970 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Holland, H. D. Sea level, sediments and the composition of seawater. Am. J. Sci. 305, 220–239 (2005).

    CAS  Google Scholar 

  18. Ferreira-Martins, D., Wilson, J. M., Kelly, S. P., Kolosov, D. & McCormick, S. D. A review of osmoregulation in lamprey. J. Gt. Lakes Res. 47, S59–S71 (2021).

    Google Scholar 

  19. Barany, A. et al. Tissue and salinity specific Na+/Cl cotransporter (NCC) orthologues involved in the adaptive osmoregulation of sea lamprey (Petromyzon marinus). Sci. Rep. 11, 22698 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Drummond, I. A. & Davidson, A. J. Zebrafish kidney development. Meth. Cell Biol. 100, 233–260 (2010).

    CAS  Google Scholar 

  21. Chambers, B. E. & Wingert, R. A. Mechanisms of nephrogenesis revealed by zebrafish chemical screen: prostaglandin signaling modulates nephron progenitor fate. Nephron 143, 68–76 (2019).

    CAS  PubMed  Google Scholar 

  22. O’Brien, L. L. et al. Wt1a, Foxc1a, and the Notch mediator Rbpj physically interact and regulate the formation of podocytes in zebrafish. Dev. Biol. 358, 318–330 (2011).

    PubMed  PubMed Central  Google Scholar 

  23. Oxburgh, L. Growth control of the kidney. Curr. Top. Dev. Biol. 148, 237–263 (2022).

    CAS  PubMed  Google Scholar 

  24. Piscione, T. D., Wu, M. Y. J. & Quaggin, S. E. Expression of Hairy/Enhancer of Split genes, Hes1 and Hes5, during murine nephron morphogenesis. Gene Expr. Patterns 4, 707–711 (2004).

    CAS  PubMed  Google Scholar 

  25. Miyashita, T. et al. Hagfish from the Cretaceous Tethys Sea and a reconciliation of the morphological-molecular conflict in early vertebrate phylogeny. Proc. Natl Acad. Sci. USA 116, 2146–2151 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kapp, F. G. et al. Protection from UV light is an evolutionarily conserved feature of the haematopoietic niche. Nature 558, 445–448 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zapata, A., Fänge, R., Mattisson, A. & Villena, A. Plasma cells in adult Atlantic hagfish, Myxine glutinosa. Cell Tissue Res. 235, 691–693 (1984).

    CAS  PubMed  Google Scholar 

  28. Smith, H. W. Water regulation and its evolution in the fishes. Q. Rev. Biol. 7, 1–26 (1932).

    CAS  Google Scholar 

  29. Robertson, J. D. The chemical composition of the blood of some aquatic chordates, including members of the tunicata, cyclostomata and osteichthyes. J. Exp. Biol. 31, 424–442 (1954).

    CAS  Google Scholar 

  30. Hickman, C. P. & Trump, B. F. in Fish Physiology Vol. 1 91–239 (Academic Press, 1969).

  31. Fels, L. M., Raguse-Degener, G. & Stolte, H. The archinephron of Myxine glutinosa L. (Cyclostomata). Struct. Funct. Kidney 1, 73–102 (1989).

    Google Scholar 

  32. Fange, R. in The Biology of Myxine (eds Brodal, A. & Fänge, R.) 516–529 (Univ.-Forl., 2007).

  33. Riegel, J. A. Hydrostatic pressures in glomeruli and renal vasculature of the hagfish, Eptatretus stouti. J. Exp. Biol. 123, 359–371 (1986).

    CAS  PubMed  Google Scholar 

  34. Heath‐Eves, M. J. & McMillan, D. B. The morphology of the kidney of the Atlantic hagfish, Myxine glutinosa (L.). Am. J. Anat. 139, 309–333 (1974).

    Google Scholar 

  35. Kühn, K., Stolte, H. & Reale, E. The fine structure of the kidney of the hagfish (Myxine glutinosa L.) — a thin section and freeze-fracture study. Cell Tissue Res. 164, 201–213 (1975).

    PubMed  Google Scholar 

  36. Tsujii, T., Naito, I., Ukita, S., Ono, T. & Seno, S. The anionic barrier system in the mesonephric renal glomerulus of the arctic lamprey, Entosphenus japonicus (Martens) (Cyclostomata). Cell Tissue Res. 235, 491–496 (1984).

    CAS  PubMed  Google Scholar 

  37. Decker, B. & Reale, E. The glomerular filtration barrier of the kidney in seven vertebrates classes. Comparative morphological and histochemical observations. Eur. J. Basic Appl. Histochem. 35, 15–36 (1991).

    CAS  PubMed  Google Scholar 

  38. Rall, D. P. & Burger, J. W. Some aspects of hepatic and renal excretion in Myxine. Am. J. Physiol. 212, 354–356 (1967).

    CAS  PubMed  Google Scholar 

  39. Munz, F. W. & McFarland, W. N. Regulatory function of a primitive vertebrate kidney. Comp. Biochem. Physiol. 13, 381–400 (1964).

    CAS  PubMed  Google Scholar 

  40. Stolte, H. & Schmidt-Nielsen, B. Comparative aspects of fluid and electrolyte regulation by the cyclostome, elasmobranch and lizard kidney. Osmotic Vol. Regul. 1, 209–222 (1978).

    Google Scholar 

  41. Morris, R. Studies on salt and water balance in Myxine glutinosa (L.). J. Exp. Biol. 42, 359–371 (1965).

    CAS  Google Scholar 

  42. Johnson, N. S., Buchinger, T. J. & Li, W. in Lampreys: Biology, Conservation and Control vol. 1 265–303 (Springer, 2015).

  43. Ferreira-Martins, D., Coimbra, J., Antunes, C., Wilson, J. M. & Cooke, S. Effects of salinity on upstream-migrating, spawning sea lamprey, Petromyzon marinus. Conserv. Physiol. 4, cov064 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Logan, A. G., Moriarty, R. J., Morris, R. & Rankin, J. C. The anatomy and blood system of the kidney in the river lamprey, Lampetra fluviatilis. Anat. Embryol. 158, 245–252 (1980).

    CAS  Google Scholar 

  45. Logan, A. G., Morris, R. & Rankin, J. C. A micropuncture study of kidney function in the river lamprey Lampetra fluviatilis adapted to sea water. J. Exp. Biol. 88, 239–247 (1980).

    CAS  PubMed  Google Scholar 

  46. Tseng, Y. C., Yan, J. J., Furukawa, F. & Hwang, P. P. Did acidic stress resistance in vertebrates evolve as Na+/H+ exchanger-mediated ammonia excretion in fish? BioEssays 42, e1900161 (2020).

    PubMed  Google Scholar 

  47. Kolosov, D., Bui, P., Donini, A., Wilkie, M. P. & Kelly, S. P. A role for tight junction-associated MARVEL proteins in larval sea lamprey (Petromyzon marinus) osmoregulation. J. Exp. Biol. https://doi.org/10.1242/jeb.161562 (2017).

    Article  PubMed  Google Scholar 

  48. Barany, A., Shaughnessy, C. A., Fuentes, J., Mancera, J. M. & McCormick, S. D. Osmoregulatory role of the intestine in the sea lamprey (Petromyzon marinus). Am. J. Physiol. Regul. Integr. Comp. Physiol. 318, R410–R417 (2020).

    CAS  PubMed  Google Scholar 

  49. Hanukoglu, I. & Hanukoglu, A. Epithelial sodium channel (ENaC) family: phylogeny, structure-function, tissue distribution, and associated inherited diseases HHS Public Access. Gene 579, 95–132 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lacy, E. R. & Reale, E. in Fish Physiology Vol. 14 (eds Wood, C. M. & Shuttleworth, T. J.) 107–146 (Academic Press, 1995).

  51. Hammerschlag, N. Osmoregulation in elasmobranchs: a review for fish biologists, behaviourists and ecologists. Mar. Freshw. Behav. Physiol. 39, 209–228 (2006).

    CAS  Google Scholar 

  52. Hentschel, H. & Zierold, K. Morphology and element distribution of magnesium-secreting epithelium: the proximal tubule segment PII of dogfish, Scyliorhinus caniculus (L.). Eur. J. Cell Biol. 63, 32–42 (1994).

    CAS  PubMed  Google Scholar 

  53. Stolte, H. et al. Renal tubule ion transport and collecting duct function in the elasmobranch little skate, Raja erinacea. J. Exp. Zool. 199, 403–410 (1977).

    CAS  PubMed  Google Scholar 

  54. Horie, T. et al. Segment-dependent gene expression profiling of the cartilaginous fish nephron using laser microdissection for functional characterization of nephron at segment levels. Zool. Sci. 40, 91–104 (2023).

    Google Scholar 

  55. Anderson, W. G., Taylor, J. R., Good, J. P., Hazon, N. & Grosell, M. Body fluid volume regulation in elasmobranch fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 148, 3–13 (2007).

    PubMed  Google Scholar 

  56. Olson, K. R. in Sharks, Skates, and Rays: The Biology of Elasmobranch Fishes (ed. Hamlet, W. C.) 329–352 (John Hopkins University Press, 1999).

  57. Yancey, P. H. Organic osmolytes in elasmobranchs. Fish. Physiol. 34, 221–277 (2015).

    Google Scholar 

  58. Kempton, R. T. Studies on the elasmobranch kidney. IV. The secretion of phenol red by the smooth dogfish, Mustelus canis. Biol. Bull. 130, 359–368 (1966).

    Google Scholar 

  59. Boylan, J. W. A model for passive urea reabsorption in the elasmobranch kidney. Comp. Biochem. Physiol. A Physiol. 42, 27–30 (1972).

    CAS  Google Scholar 

  60. Evans, D. H., Piermarini, P. M. & Choe, K. P. in Biology of Sharks and Their Relatives (eds Carrier, J. C., Musick, J. A. & Heithaus, M. R.) 247–268 (CRC Press, 2004).

  61. Haywood, G. P. Indications of sodium, chloride, and water exchange across the gills of the striped dogfish Poroderma africanum. Mar. Biol. 29, 267–276 (1975).

    Google Scholar 

  62. Biemesderfer, D., Payne, J. A., Lytle, C. Y. & Forbush, B. Immunocytochemical studies of the Na-K-Cl cotransporter of shark kidney. Am. J. Physiol. 270, F927–F936 (1996).

    CAS  PubMed  Google Scholar 

  63. Morgan, R. L., Ballantyne, J. S. & Wright, P. A. Regulation of a renal urea transporter with reduced salinity in a marine elasmobranch, Raja erinacea. J. Exp. Biol. 206, 3285–3292 (2003).

    CAS  PubMed  Google Scholar 

  64. Morgan, R. L., Wright, P. A. & Ballantyne, J. S. Urea transport in kidney brush-border membrane vesicles from an elasmobranch, Raja erinacea. J. Exp. Biol. 206, 3293–3302 (2003).

    CAS  PubMed  Google Scholar 

  65. Schmidt-Nielsen, B. & Rabinowitz, L. Methylurea and acetamide: active reabsorption by elasmobranch renal tubules. Science 146, 1587–1588 (1964).

    CAS  PubMed  Google Scholar 

  66. Aburatani, N. et al. Facilitated NaCl uptake in the highly developed bundle of the nephron in Japanese red stingray Hemitrygon akajei revealed by comparative anatomy and molecular mapping. Zool. Sci. 37, 458–466 (2020).

    Google Scholar 

  67. Brown, J. A. & Green, C. Glomerular bypass shunts and distribution of glomeruli in the kidney of the lesser spotted dogfish, Scyliorhinus caniculus. Cell Tissue Res. 269, 299–304 (1992).

    CAS  PubMed  Google Scholar 

  68. Cutler, C. P., MacIver, B., Cramb, G. & Zeidel, M. Aquaporin 4 is a ubiquitously expressed isoform in the dogfish (Squalus acanthias) shark. Front. Physiol. 2, 1–9 (2012).

    Google Scholar 

  69. Pillans, R. D., Fry, G. C., Steven, A. D. L. & Patterson, T. Environmental influences on long-term movement patterns of a euryhaline elasmobranch (Carcharhinus leucas) within a subtropical estuary. Estuaries Coasts 43, 2152–2169 (2020).

    CAS  Google Scholar 

  70. Goldstein, L. & Forster, R. P. Osmoregulation and urea metabolism in the little skate Raja erinacea. Am. J. Physiol. 220, 742–746 (1971).

    CAS  PubMed  Google Scholar 

  71. Hwang, P. P. & Lin, L. Y. in The Physiology of Fishes 4th edn 205–234 (Taylor & Francis, 2013).

  72. Bray, A. A. The evolution of the terrestrial vertebrates: environmental and physiological considerations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 309, 289–322 (1985).

    CAS  PubMed  Google Scholar 

  73. Kirschner, L. B. The energetics of osmotic regulation in ureotelic and hypoosmotic fishes. J. Exp. Zool. 267, 19–26 (1993).

    CAS  Google Scholar 

  74. Fines, G. A., Ballantyne, J. S. & Wright, P. A. Active urea transport and an unusual basolateral membrane composition in the gills of a marine elasmobranch. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, 16–24 (2001).

    Google Scholar 

  75. MacPherson, J., Weinrauch, A. M., Anderson, W. G. & Bucking, C. The gut microbiome may influence post-prandial nitrogen handling in an elasmobranch, the Pacific spiny dogfish (Squalus suckleyi). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 272, 111269 (2022).

    CAS  PubMed  Google Scholar 

  76. Wood, C. M., Liew, H. J., De Boeck, G., Hoogenboom, J. L. & Anderson, W. G. Nitrogen handling in the elasmobranch gut: a role for microbial urease. J. Exp. Biol. 222, jeb194787 (2019).

    PubMed  Google Scholar 

  77. Claiborne, J. B. & Evans, D. H. Acid‐base balance and ion transfers in the spiny dogfish (Squalus acanthias) during hypercapnia: a role for ammonia excretion. J. Exp. Zool. 261, 9–17 (1992).

    CAS  Google Scholar 

  78. Wood, C. F., Part, P. & Wright, P. A. Ammonia and urea metabolism in relation to gill function and acid-base balance in a marine elasmobranch, the spiny dogfish (Squalus acanthias). J. Exp. Biol. 198, 1545–1558 (1995).

    CAS  PubMed  Google Scholar 

  79. Tresguerres, M., Katoh, F., Fenton, H., Jasinska, E. & Goss, G. G. Regulation of branchial V-H+-ATPase, Na+/K+-ATPase and NHE2 in response to acid and base infusions in the Pacific spiny dogfish (Squalus acanthias). J. Exp. Biol. 208, 345–354 (2005).

    CAS  PubMed  Google Scholar 

  80. Tresguerres, M., Parks, S. K., Katoh, F. & Goss, G. G. Microtubule-dependent relocation of branchial V-H+-ATPase to the basolateral membrane in the Pacific spiny dogfish (Squalus acanthias): a role in base secretion. J. Exp. Biol. 209, 599–609 (2006).

    CAS  PubMed  Google Scholar 

  81. Lote, C. J. Principles of Renal Physiology (Springer, 2012).

  82. Wright, P. A. & Wood, C. M. Regulation of ions, acid–base, and nitrogenous wastes in elasmobranchs. Fish. Physiol. 34, 279–345 (2015).

    Google Scholar 

  83. King, P. A. & Goldstein, L. Renal ammoniagenesis and acid excretion in the dogfish, Squalus acanthias. Am. J. Physiol. Regul. Integr. Comp. Physiol. 14, R581–R589 (1983).

    Google Scholar 

  84. Carrete Vega, G. & Wiens, J. J. Why are there so few fish in the sea? Proc. R. Soc. B Biol. Sci. 279, 2323–2329 (2012).

    Google Scholar 

  85. Beyenbach, K. W. Secretory NaCl and volume flow in renal tubules. Am. J. Physiol. Regul. Integr. Comp. Physiol. 250, R753–R763 (1986).

    CAS  Google Scholar 

  86. Schmidt-Nielsen, K. The salt-secreting gland of marine birds. Circulation 21, 955–967 (1960).

    CAS  PubMed  Google Scholar 

  87. Curtis, B. J. & Wood, C. M. The function of the urinary bladder in vivo in the freshwater rainbow trout. J. Exp. Biol. 155, 567–583 (1991).

    Google Scholar 

  88. McDonald, M. D. & Wood, C. M. Differential handling of urea and its analogues suggests carrier-mediated urea excretion in freshwater rainbow trout. Physiol. Biochem. Zool. 76, 791–802 (2003).

    CAS  PubMed  Google Scholar 

  89. King, P. A. & Goldstein, L. Renal ammonia excretion and production in goldfish, Carassius auratus, at low environmental pH. Am. J. Physiol. Regul. Integr. Comp. Physiol. 14, 590–599 (1983).

    Google Scholar 

  90. Wichmann, L. & Althaus, M. Evolution of epithelial sodium channels: current concepts and hypotheses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 319, R387–R400 (2020).

    CAS  PubMed  Google Scholar 

  91. Evans, R. G., Harrop, G. K., Ngo, J. P., Ow, C. P. C. & O’Connor, P. M. Basal renal O2 consumption and the efficiency of O2 utilization for Na+ reabsorption. Am. J. Physiol. Renal Physiol. 306, F551–F560 (2014).

    CAS  PubMed  Google Scholar 

  92. Evans, R. G. Evolution of the glomerulus in a marine environment and its implications for renal function in terrestrial vertebrates. Am. J. Physiol. Regul. Integr. Comp. Physiol. 324, R143–R151 (2023).

    CAS  PubMed  Google Scholar 

  93. Rauh, R. et al. A mutation of the epithelial sodium channel associated with atypical cystic fibrosis increases channel open probability and reduces Na+ self inhibition. J. Physiol. 588, 1211–1225 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Schild, L. et al. Identification of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. EMBO J. 15, 2381–2387 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kerem, E. et al. Pulmonary epithelial sodium-channel dysfunction and excess airway liquid in pseudohypoaldosteronism. N. Engl. J. Med. 341, 156–162 (1999).

    CAS  PubMed  Google Scholar 

  96. McMillan, D. B. in Encyclopedia of Fish Physiology: From Genome to Environment (ed. Farrell, A. P.) 1395–1410 (Elsevier Science, 2011).

  97. Kirschner, L. B. Comparison of vertebrate salt-excreting organs. Am. J. Physiol. Regulatory, Integr. Comp. Physiol. 238, R219–R223 (1980).

    CAS  Google Scholar 

  98. Wright, P. A., Wood, C. M. & Wilson, J. M. Rh versus pH: the role of Rhesus glycoproteins in renal ammonia excretion during metabolic acidosis in a freshwater teleost fish. J. Exp. Biol. 217, 2855–2865 (2014).

    PubMed  Google Scholar 

  99. Evans, D. H. & Claiborne, J. B. in Osmotic and ionic regulation 295–366 (CRC Press, 2008).

  100. Beyenbach, K. W. & Liu, P. L. F. Mechanism of fluid secretion common to aglomerular and glomerular kidneys. Kidney Int. 49, 1543–1548 (1996).

    CAS  PubMed  Google Scholar 

  101. Beyenbach, K. W. Kidneys sans glomeruli. Am. J. Physiol. Renal Physiol. 286, F811–F827 (2004).

    CAS  PubMed  Google Scholar 

  102. Senarat, S. et al. An update on the evolutionary origin of aglomerular kidney with structural and ultrastructural descriptions of the kidney in three fish species. J. Fish. Biol. 100, 1283–1298 (2022).

    PubMed  Google Scholar 

  103. Ichimura, K. et al. A comparative analysis of glomerulus development in the pronephros of medaka and zebrafish. PLoS ONE 7, e45286 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Sharma, R., Sanchez-Ferras, O. & Bouchard, M. Pax genes in renal development, disease and regeneration. Semin. Cell Dev. Biol. 44, 97–106 (2015).

    CAS  PubMed  Google Scholar 

  105. Perner, B., Englert, C. & Bollig, F. The Wilms tumor genes wt1a and wt1b control different steps during formation of the zebrafish pronephros. Dev. Biol. 309, 87–96 (2007).

    CAS  PubMed  Google Scholar 

  106. Lim, S. et al. Zebrafish (Danio rerio) as a model organism for screening nephrotoxic chemicals and related mechanisms. Ecotoxicol. Environ. Saf. 242, 113842 (2022).

    CAS  PubMed  Google Scholar 

  107. Fatma, S., Nayak, U. & Swain, R. K. Methods to generate and evaluate zebrafish models of human kidney diseases. Int. J. Dev. Biol. 65, 475–485 (2021).

    CAS  PubMed  Google Scholar 

  108. Katsiadaki, I. et al. Three-spined stickleback: an emerging model in environmental endocrine disruption. Environ. Sci. 14, 263–283 (2007).

    CAS  PubMed  Google Scholar 

  109. Hasan, M. M. et al. Sticklebacks adapted to divergent osmotic environments show differences in plasticity for kidney morphology and candidate gene expression. J. Exp. Biol. 220, 2175–2186 (2017).

    PubMed  Google Scholar 

  110. Wang, G. et al. Gene expression responses of threespine stickleback to salinity: implications for salt-sensitive hypertension. Front. Genet. 5, 312 (2014).

    PubMed  PubMed Central  Google Scholar 

  111. Jolly, C., Katsiadaki, I., Le Belle, N., Mayer, I. & Dufour, S. Development of a stickleback kidney cell culture assay for the screening of androgenic and anti-androgenic endocrine disrupters. Aquat. Toxicol. 79, 158–166 (2006).

    CAS  PubMed  Google Scholar 

  112. George, D. & Blieck, A. Rise of the earliest tetrapods: an Early Devonian origin from marine environment. PLoS ONE 6, e22136 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Swartz, B. A marine stem-tetrapod from the Devonian of western North America. PLoS ONE 7, e33683 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Biscotti, M. A. et al. The lungfish transcriptome: a glimpse into molecular evolution events at the transition from water to land. Sci. Rep. 6, 21571 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Schmidt-Nielsen, K. & Lee, P. Kidney function in the crab-eating frog (Rana cancrivora). J. Exp. Biol. 39, 167–177 (1962).

    CAS  PubMed  Google Scholar 

  116. Rastogi, R. K. Reproductive biology and phylogeny of gymnophiona (Caecilians). Integr. Comp. Biol. 47, 789–790 (2007).

    Google Scholar 

  117. Carvalho, E. T. C. & Junqueira, L. C. U. Histology of the kidney and urinary bladder of Siphonops annulatus (Amphibia-Gymnophiona). Arch. Histol. Cytol. 62, 39–45 (1999).

    CAS  PubMed  Google Scholar 

  118. Sakai, T., Billo, R. & Kriz, W. The structural organization of the kidney of Typhlonectes compressicaudus (Amphibia, Gymnophiona). Anat. Embryol. 174, 243–252 (1986).

    CAS  Google Scholar 

  119. Sakai, T., Billo, R., Nobiling, R., Gorgas, K. & Kriz, W. Ultrastructure of the kidney of a South American caecilian, Typhlonectes compressicaudus (Amphibia, Gymnophiona). Cell Tissue Res. 252, 589–600 (1988).

    CAS  PubMed  Google Scholar 

  120. Sakai, T. et al. Ultrastructure of the kidney of a South American caecilian, Typhlonectes compressicaudus (Amphibia, Gymnophiona). II. Distal tubule, connecting tubule, collecting duct and Wolffian duct. Cell Tissue Res. 252, 601–610 (1988).

    CAS  PubMed  Google Scholar 

  121. Larsen, E. H. Dual skin functions in amphibian osmoregulation. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 253, 110869 (2021).

    CAS  PubMed  Google Scholar 

  122. Stiffler, D. F., DeRuyter, M. L. & Talbot, C. R. Osmotic and ionic regulation in the aquatic caecilian Typhlonectes compressicauda and the terrestrial caecilian Ichthyophis kohtaoensis. Physiol. Zool. 63, 649–668 (1990).

    Google Scholar 

  123. Martin, J. A. & Hillman, S. S. The physical movement of urine from the kidneys to the urinary bladder and bladder compliance in two anurans. Physiol. Biochem. Zool. 82, 163–169 (2009).

    PubMed  Google Scholar 

  124. Jørgensen, C. B. Water economy in a terrestrial toad (Bufo bufo), with special reference to cutaneous drinking and urinary bladder function. Comp. Biochem. Physiol. A Physiol. 109, 311–324 (1994).

    Google Scholar 

  125. Loong, A. M., Chew, S. F. & Ip, Y. K. Excretory nitrogen metabolism in the juvenile axolotl Ambystoma mexicanum: differences in aquatic and terrestrial environments. Physiol. Biochem. Zool. 75, 459–468 (2002).

    CAS  PubMed  Google Scholar 

  126. Janssens, P. A. & Cohen, P. P. Ornithine-urea cycle enzymes in the African lungfish, Protopterus aethiopicus. Science 152, 358–359 (1966).

    CAS  PubMed  Google Scholar 

  127. Janssens, P. A. & Cohen, P. P. Nitrogen metabolism in the African lungfish. Comp. Biochem. Physiol. 24, 879–886 (1968).

    CAS  PubMed  Google Scholar 

  128. Graham, J. B. Air-Breathing Fishes: Evolution, Diversity, and Adaptation (Elsevier, 1997).

  129. Paton, R. L., Smithson, T. R. & Clack, J. A. An amniote-like skeleton from the Early Carboniferous of Scotland. Nature 398, 508–513 (1999).

    CAS  Google Scholar 

  130. Barten, S. & Simpson, S. in Mader’s Reptile and Amphibian Medicine and Surgery (eds Divers, S. J. & Stahl, S. J.) 63–75 (Elsevier Health Sciences, 2018).

  131. Trauth, S. E. Distal urogenital anatomy of male prairie racerunners, Aspidoscelis sexlineatus viridis (Reptilia: Sauria: Teiidae). J. Ark. Acad. Sci. 74, 6 (2020).

    Google Scholar 

  132. Rheubert, J. L., Siegel, D. S. & Trauth, S. E. (eds) Reproductive Biology and Phylogeny of Lizards and Tuatara (CRC Press, 2014).

  133. Prasad, M. R. N. & Reddy, P. R. K. Physiology of the sexual segment of the kidney in reptiles. Gen. Comp. Endocrinol. 3, 649–662 (1972).

    Google Scholar 

  134. Badir, N. Seasonal variation of the male urogenital organs of Scincus scincus L. and Chalcides ocellatus Forsk. Zeit Wissen Zool. 160, 290–351 (1958).

    Google Scholar 

  135. Dantzler, W. H., Braun, R. J. & Braun, E. J. Comparative nephron function in reptiles, birds, and mammals. Am. J. Physiol. Regul. Integr. Comp. Physiol. 8, R197–R213 (1980).

    Google Scholar 

  136. Dantzler, W. H. & Schmidt-Nielsen, B. Excretion in fresh-water turtle (Pseudemys scripta) and desert tortoise (Gopherus agassi). Am. J. Physiol. Leg. Content 210, 198–210 (1966).

    Google Scholar 

  137. Bendami, S., Znari, M. & Loulida, S. Water and electrolyte budgets in the desert-dwelling Moroccan spiny-tailed lizard Uromastyx nigriventris (Rothschild & Hartert, 1912 Reptilia: Agamidae). SSRN Electron. J. https://doi.org/10.2139/ssrn.4047693 (2022).

    Article  Google Scholar 

  138. Holz, P. H. Anatomy and physiology of the reptile renal system. Vet. Clin. North Am. Exot. Anim. Pract. 23, 103–114 (2020).

    PubMed  Google Scholar 

  139. Brewer, K. J. & Ensor, D. M. Hormonal control of osmoregulation in the Chelonia I. The effects of prolactin and interrenal steroids in freshwater Chelonians. Gen. Comp. Endocrinol. 42, 304–309 (1980).

    CAS  PubMed  Google Scholar 

  140. Schmidt-Nielsen, B. & Davis, L. E. Fluid Transport and tubular intercellular spaces in reptilian kidneys. Science 159, 1105–1108 (1968).

    CAS  PubMed  Google Scholar 

  141. Hernandez-Divers, S. M. S. J. et al. Renal evaluation in the healthy green iguana (Iguana iguana): assessment of plasma biochemistry, glomerular filtration rate, and endoscopic biopsy. J. Zoo. Wildl. Med. 36, 155–168 (2005).

    PubMed  Google Scholar 

  142. Campbell, J. W. in Nitrogen Metabolism and Excretion 147–178 (CRC Press, 1995).

  143. Braun, E. J. Comparative renal function in reptiles, birds, and mammals. Semin. Avian Exot. Pet. Med. 7, 62–71 (1998).

    Google Scholar 

  144. Johnson, O. W. & Mugaas, J. N. Quantitative and organizational features of the avian renal medulla. Condor 72, 288–292 (1970).

    Google Scholar 

  145. Braun, E. & Dantzler, W. Function of mammalian-type and reptilian-type nephrons in kidney of desert quail. Am. J. Physiol. 222, 617–629 (1972).

    CAS  PubMed  Google Scholar 

  146. Khadhim, I. A. A. Study of anatomical description and histological structure of the kidney in Iraqi birds. J. Univ. Babylon. Pure Appl. Sci. https://doi.org/10.29196/jubpas.v30i4.4405 (2023).

    Article  Google Scholar 

  147. Deepa, K. P., Sreeranjini, A. R. & Soumya, C. B. Comparative histological studies on the renal cortex in broiler chicken and broiler duck. Pharma Innov. J. 9, 129–131 (2020).

    Google Scholar 

  148. Shehan, N. A., Hussein, H. A., Da’aj, S. A. & Ali, S. A. Morphology, histology and histochemical study of kidneys in the Iraqi falcon (Falcon berigora). Biochem. Cell. Arch. 20, 0–0 (2020).

    Google Scholar 

  149. Wideman, R. F., Braun, E. J. & Anderson, G. L. Microanatomy of the renal cortex in the domestic fowl. J. Morphol. 168, 249–267 (1981).

    PubMed  Google Scholar 

  150. Braun, E. J. & Reimer, P. R. Structure of avian loop of Henle as related to countercurrent multiplier system. Am. J. Physiol. Renal Fluid Electrolyte Physiol. 255, F500–F512 (1988).

    CAS  Google Scholar 

  151. Nishimura, H., Koseki, C., Imai, M. & Braun, E. J. Sodium chloride and water transport in the thin descending limb of Henle of the quail. Am. J. Physiol. Renal Fluid Electrolyte Physiol. 257, F994–F1002 (1989).

    CAS  Google Scholar 

  152. Coles, B. H. Essentials of Avian Medicine and Surgery (Blackwell, 1997).

  153. Gasthuys, E. et al. Comparative physiology of glomerular filtration rate by plasma clearance of exogenous creatinine and exo-iohexol in six different avian species. Sci. Rep. 9, 19699 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Wideman, R. F. & Gregg, C. M. Model for evaluating avian renal hemodynamics and glomerular filtration rate autoregulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 254, 2–3 (1988).

    Google Scholar 

  155. Braun, E. J. & Dantzler, W. H. Effects of ADH on single nephron glomerular filtration rates in the avian kidney. Am. J. Physiol. 226, 1–8 (1974).

    CAS  PubMed  Google Scholar 

  156. Bindslev, N. & Skadhauge, R. Salt and water permeability of the epithelium of the coprodeum and large intestine in the normal and dehydrated fowl (Gallus domesticus). In vivo perfusion studies. J. Physiol. 216, 735–751 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Dantzler, W. H. in Comparative Physiology of the Vertebrate Kidney 7–36 (Springer, 2016).

  158. Dudas, P. L., Pelis, R. M., Braun, E. J. & Renfro, J. L. Transepithelial urate transport by avian renal proximal tubule epithelium in primary culture. J. Exp. Biol. 208, 4305–4315 (2005).

    CAS  PubMed  Google Scholar 

  159. Anderson, G. L. & Braun, E. J. Postrenal modification of urine in birds. Am. J. Physiol. 248, R93–R98 (1985).

    CAS  PubMed  Google Scholar 

  160. Williams, J. B. & Braun, E. J. Renal compensation for cecal loss in Gambel’s quail (Callipepla gambelii). Comp. Biochem. Physiol. A Physiol. 113, 333–341 (1996).

    CAS  PubMed  Google Scholar 

  161. Campbell, C. E. & Braun, E. J. Cecal degradation of uric acid in Gambel quail. Am. J. Physiol. Regul. Integr. Comp. Physiol. 251, 59–62 (1986).

    Google Scholar 

  162. Crouch, N. M. A., Lynch, V. M. & Clarke, J. A. A re-evaluation of the chemical composition of avian urinary excreta. J. Ornithol. 161, 17–24 (2020).

    Google Scholar 

  163. Skadhauge, E. Renal concentrating ability in selected West Australian birds. J. Exp. Biol. 61, 269–276 (1974).

    CAS  PubMed  Google Scholar 

  164. Orosz, S. E. & Echols, M. S. The urinary and osmoregulatory systems of birds. Vet. Clin. North Am. Exot. Anim. Pract. 23, 1–19 (2020).

    PubMed  Google Scholar 

  165. Doneley, B. Avian Medicine and Surgery in Practice: Companion and Aviary Birds 2nd edn (CRC Press, 2018).

  166. Braun, E. J. Renal response of the starling (Sturnus vulgaris) to an intravenous salt load. Am. J. Physiol. Renal Fluid Electrolyte Physiol. 234, F270–F278 (1978).

    CAS  Google Scholar 

  167. Cade, T. J. & Bartholomew, G. A. Sea-water and salt utilization by savannah sparrows. Physiol. Zool. 32, 230–238 (1959).

    CAS  Google Scholar 

  168. Casotti, G. & Braun, E. J. Renal anatomy in sparrows from different environments. J. Morphol. 243, 283–291 (2000).

    CAS  PubMed  Google Scholar 

  169. O’Leary, M. A. et al. The placental mammal ancestor and the post-K-Pg radiation of placentals. Science 339, 662–667 (2013).

    PubMed  Google Scholar 

  170. Dwyer, T. M. & Schmidt-Nielsen, B. The renal pelvis: machinery that concentrates urine in the papilla. N. Physiol. Sci. 18, 1–6 (2003).

    Google Scholar 

  171. Layton, A. T. A mathematical model of the urine concentrating mechanism in the rat renal medulla. II. Functional implications of three-dimensional architecture. Am. J. Physiol. Renal Physiol. 300, F372–F384 (2011).

    CAS  PubMed  Google Scholar 

  172. Layton, A. T. A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results. Am. J. Physiol. Renal Physiol. 300, F356–F371 (2011).

    CAS  PubMed  Google Scholar 

  173. Pannabecker, T. L. & Dantzler, W. H. Three-dimensional lateral and vertical relationships of inner medullary loops of Henle and collecting ducts. Am. J. Physiol. Renal Physiol. 287, 767–774 (2004).

    Google Scholar 

  174. Pannabecker, T. L. & Dantzler, W. H. Three-dimensional architecture of collecting ducts, loops of Henle, and blood vessels in the renal papilla. Am. J. Physiol. Renal Physiol. 293, 696–704 (2007).

    Google Scholar 

  175. Schmidt-Nielsen, B. & O’Dell, R. Structure and concentrating mechanism in the mammalian kidney. Am. J. Physiol. 200, 1119–1124 (1961).

    CAS  PubMed  Google Scholar 

  176. Abdalla, M. A. & Abdalla, O. Morphometric observations on the kidney of the camel, Camelus dromedarius. J. Anat. 129, 45–50 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Al-kahtani, M. A., Zuleta, C., Caviedes-Vidal, E. & Garland, T. Kidney mass and relative medullary thickness of rodents in relation to habitat, body size, and phylogeny. Physiol. Biochem. Zool. 77, 346–365 (2004).

    PubMed  Google Scholar 

  178. Miller, J., Durack, J. C., Sorensen, M. D., Wang, J. H. & Stoller, M. L. Renal calyceal anatomy characterization with 3-dimensional in vivo computerized tomography imaging. J. Urol. 189, 562–567 (2013).

    PubMed  Google Scholar 

  179. Gerosa, C., Fanni, D., Nemolato, S. & Faa, G. in Kidney Development in Renal Pathology 13–28 (Springer, 2014).

  180. Calder, W. A. & Braun, E. J. Scaling of osmotic regulation in mammals and birds. Am. J. Physiol. Regul. Integr. Comp. Physiol. 13, 601–606 (1983).

    Google Scholar 

  181. Ashley Hill, D. & Reynolds, J. E. Gross and microscopic anatomy of the kidney of the West Indian Manatee, Trichechus manatus (Mammalia: Sirenia). Cell Tissues Organs 135, 53–56 (1989).

    Google Scholar 

  182. Fanos, V. et al. From ureteric bud to the first glomeruli: genes, mediators, kidney alterations. Int. Urol. Nephrol. 47, 109–116 (2015).

    PubMed  Google Scholar 

  183. Chambers, J. M. & Wingert, R. A. Advances in understanding vertebrate nephrogenesis. Tissue Barriers 8, 1832844 (2020).

    PubMed  PubMed Central  Google Scholar 

  184. Cao, M. et al. Urothelium-derived Sonic hedgehog promotes mesenchymal proliferation and induces bladder smooth muscle differentiation. Differentiation 79, 244–250 (2013).

    Google Scholar 

  185. Sanyanusin, P. et al. Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat. Genet. 9, 358–364 (1995).

    CAS  PubMed  Google Scholar 

  186. Abdelhak, S. et al. Clustering of mutations responsible for branchio-oto-renal (BOR) syndrome in the eyes absent homologous region (eyaHR) of EYA1. Hum. Mol. Genet. 6, 2247–2255 (1997).

    CAS  PubMed  Google Scholar 

  187. Roberts, R. M., Green, J. A. & Schulz, L. C. Reproduction the evolution of the placenta. Reproduction https://doi.org/10.1530/REP-16-0325 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Georgas, K. M. et al. An illustrated anatomical ontology of the developing mouse lower urogenital tract. Development 142, 1893–1908 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Xu, K. et al. Bmp7 functions via a polarity mechanism to promote cloacal septation. PLoS ONE 7, e29372 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Niida, A. et al. DKK1, a negative regulator of Wnt signaling, is a target of the b-catenin/TCF pathway. Oncogene 23, 8520–8526 (2004).

    CAS  PubMed  Google Scholar 

  191. Huang, Y. C., Chen, F. & Li, X. Clarification of mammalian cloacal morphogenesis using high-resolution episcopic microscopy. Dev. Biol. 409, 106–113 (2016).

    CAS  PubMed  Google Scholar 

  192. Wang, C., Wang, J., Borer, J. G. & Li, X. Embryonic origin and remodeling of the urinary and digestive outlets. PLoS ONE 8, 55587 (2013).

    Google Scholar 

  193. Arlen, A. M., Nawaf, C. & Kirsch, A. J. Prune belly syndrome: current perspectives. Pediatr. Health Med. Ther. https://doi.org/10.2147/PHMT.S188014 (2019).

    Article  Google Scholar 

  194. Uy, N. & Reidy, K. Developmental genetics and congenital anomalies of the kidney and urinary tract. J. Pediatr. Genet. 05, 051–060 (2015).

    Google Scholar 

  195. Meyer, R. Zur Anatomie und Entwicklungsgeschichte der Ureterverdoppelung. Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 187, 408–434 (1907).

    Google Scholar 

  196. Hall, M. I., Rodriguez-Sosa, J. R. & Plochocki, J. H. Reorganization of mammalian body wall patterning with cloacal septation. Sci. Rep. https://doi.org/10.1038/s41598-017-09359-y (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Schlomer, B., Rodriguez, E. & Baskin, L. Obstructed hemivagina and ipsilateral renal agenesis (OHVIRA) syndrome should be redefined as ipsilateral renal anomalies: cases of symptomatic atrophic and dysplastic kidney with ectopic ureter to obstructed hemivagina. J. Pediatr. Urol. 11, 77.e1-6 (2015).

    PubMed  Google Scholar 

  198. Weigert, C. Ueber einige Bildungsfehler der Ureteren. Arch. Pathol. Anat. 70, 490–501 (1877).

    Google Scholar 

  199. Mackie, G. G. & Stephens, F. D. Duplex kidneys: a correlation of renal dysplasia with position of the ureteral orifice. J. Urol. 114, 274–280 (1975).

    CAS  PubMed  Google Scholar 

  200. Glassberg, K. I. et al. Suggested terminology for duplex systems, ectopic ureters and ureteroceles. J. Urol. 132, 1153–1154 (1984).

    CAS  PubMed  Google Scholar 

  201. Schwarz, R. & Stephens, F. D. The persisting mesonephric duct: high junction of vas deferens and ureter. J. Urol. 120, 592–596 (1978).

    CAS  PubMed  Google Scholar 

  202. Hatini, V., Huh, S. O., Herzlinger, D., Soares, V. C. & Lai, E. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev. 10, 1467–1478 (1996).

    CAS  PubMed  Google Scholar 

  203. Talmatamar, A. et al. Kidney functional morphology variations between spring and winter in the Saharan male lizard Uromastyx acanthinura (Sauria, Agamidae), with special reference to body water economy. Tissue Cell 67, 101448 (2020).

    CAS  PubMed  Google Scholar 

  204. Thigpen, C., Best, L. & Camarata, T. Comparative morphology and allometry of select extant cryptodiran turtle kidneys. Zoomorphology 139, 111–121 (2020).

    Google Scholar 

  205. Agha, M. et al. Physiological consequences of rising water salinity for a declining freshwater turtle. Conserv. Physiol. 7, coz054 (2019).

    PubMed  PubMed Central  Google Scholar 

  206. Ahmad Alabdallah, Z. et al. Influence of different genders of Japanese quail on the functional state of kidneys. Arch. Razi Inst. 76, 667–680 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Laulhé, M. et al. Sexual dimorphism of corticosteroid signaling during kidney development. Int. J. Mol. Sci. 22, 5275 (2021).

    PubMed  PubMed Central  Google Scholar 

  208. Verzola, D. et al. Testosterone promotes apoptotic damage in human renal tubular cells. Kidney Int. 65, 1252–1261 (2004).

    CAS  PubMed  Google Scholar 

  209. Fekete, A. et al. Sex differences in the alterations of Na+,K+-ATPase following ischaemia-reperfusion injury in the rat kidney. J. Physiol. 555, 471–480 (2004).

    CAS  PubMed  Google Scholar 

  210. Hosszu, A., Fekete, A. & Szabo, A. J. Sex differences in renal ischemia-reperfusion injury. Am. J. Physiol. Renal Physiol. 319, F149–F154 (2020).

    CAS  PubMed  Google Scholar 

  211. Fekete, A. et al. Sex differences in heat shock protein 72 expression and localization in rats following renal ischemia-reperfusion injury. Am. J. Physiol. Renal Physiol. 291, F806–F811 (2006).

    CAS  PubMed  Google Scholar 

  212. Park, K. M., Kim, J. I., Ahn, Y., Bonventre, A. J. & Bonventre, J. V. Testosterone is responsible for enhanced susceptibility of males to ischemic renal injury. J. Biol. Chem. 279, 52282–52292 (2004).

    CAS  PubMed  Google Scholar 

  213. Nemours, S. et al. Temporal and sex-dependent gene expression patterns in a renal ischemia–reperfusion injury and recovery pig model. Sci. Rep. 12, 6926 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Aufhauser, D. D. et al. Improved renal ischemia tolerance in females influences kidney transplantation outcomes. J. Clin. Investig. 126, 1968–1977 (2016).

    PubMed  PubMed Central  Google Scholar 

  215. Sunga, J., Wilson, J. M. & Wilkie, M. P. Functional re-organization of the gills of metamorphosing sea lamprey (Petromyzon marinus): preparation for a blood diet and the freshwater to seawater transition. J. Comp. Physiol. B 190, 701–715 (2020).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Assistance with the preparation of Fig. 1 was provided by R. Sager and M. Mollapour.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott V. Wiener.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Cathy Mendelsohn and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Evogeneao Tree of Life Explorer: https://www.evogeneao.com/en/explore/tree-of-life-explorer

Supplementary information

Glossary

Ammoniotelic

A type of nitrogen excretion that forms ammonia, a waste product of protein metabolism that is soluble in water, often freely diffused into the environment.

Anadromous

Migratory fish species that hatch in fresh water and migrate to the ocean until they return to freshwater rivers and streams to reproduce.

Anamniotic

An organism that lacks an amniotic sac, such as fish and amphibians. Typically, these organisms rely on aqueous environments to facilitate the process of reproduction and embryonic development.

Brackish water

Water with a salinity level higher than fresh water but lower than seawater, often in estuaries where freshwater rivers meet the ocean.

Coelacanths

Fish species constituting a lineage of lobe-finned fish, considered substantial transitional life forms relating to understanding the evolutionary transition from fish to tetrapods.

Euryhaline

Fish capable of tolerating a wide range of salinity levels.

Gnathostomes

A group of jawed vertebrates including fish, amphibians, reptiles, birds and mammals with hinged jaws, different from lampreys and hagfish.

Mesic species

Organisms adapted to moderate moisture conditions.

Müllerian

The Müllerian ducts are embryological structures that develop into the uterus, fallopian tubes and upper vagina.

Myxinids

A group of jawless fish, including hagfish.

Opisthonephros

The functional kidney in cyclostomes, fish and amphibians, which consists of mainly mesonephric structures, but contains tubules from the posterior nephric ridge.

Rhipidistian fish

The ancestral form of the earliest tetrapod, which resided in waters with at least some salinity during the early Devonian period.

Ureotelism

A type of nitrogen excretion that results in the formation of urea, a waste product of purine metabolism excreted by the kidneys.

Wolffian

The Wolffian duct is an embryological structure that develops into the epididymis, vas deferens and seminal vesicles; a derivative of the archinephric (pronephric) duct.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiener, S.V. Effects of the environment on the evolution of the vertebrate urinary tract. Nat Rev Urol 20, 719–738 (2023). https://doi.org/10.1038/s41585-023-00794-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-023-00794-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing