Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding and integrating cytoreductive nephrectomy with immune checkpoint inhibitors in the management of metastatic RCC

Abstract

Cytoreductive nephrectomy became accepted as standard of care for selected patients with metastatic renal cell carcinoma (mRCC) because of improved survival observed in patients treated with cytoreductive nephrectomy in combination with interferon-α in two randomized clinical trials published in 2001. Over the past two decades, novel systemic therapies have shown higher treatment response rates and improved survival outcomes compared with interferon-α. During this rapid evolution of mRCC treatments, systemic therapies have been the primary focus of clinical trials. Results from multiple retrospective studies continue to suggest an overall survival benefit for selected patients treated with nephrectomy in combination with systemic mRCC treatments, with the notable exception of one debated clinical trial. The optimal timing for surgery is unknown, and proper patient selection remains crucial to improving surgical outcomes. As systemic therapies continue to evolve, clinicians have an increasing need to understand how to incorporate cytoreductive nephrectomy into the management of mRCC.

Key points

  • Cytoreductive nephrectomy is an integral part of the management of patients with metastatic renal cell carcinoma (mRCC) with good performance status and limited metastatic burden.

  • Results from the CARMENA trial suggested no survival benefit for cytoreductive nephrectomy in patients with high-risk mRCC and substantial metastatic burden treated with sunitinib.

  • As systemic therapies evolve, optimal timing of cytoreductive surgery and proper patient selection continue to be investigated.

  • Treatment of patients with mRCC should include evaluation by an experienced and multidisciplinary team.

  • Integrating surgery into future mRCC treatment algorithms should involve the development of accurate pre-surgery risk stratification systems and novel clinical trial designs to investigate the continued utility and optimal timing of cytoreductive nephrectomy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multidisciplinary management of patients with mRCC.
Fig. 2: Diagnostic and management pathway for patients with mRCC.

Similar content being viewed by others

References

  1. Flanigan, R. C. & Yonover, P. M. The role of radical nephrectomy in metastatic renal cell carcinoma. Semin. Urol. Oncol. 19, 98–102 (2001).

    CAS  PubMed  Google Scholar 

  2. Bosse, D. & Ong, M. Evolution in upfront treatment strategies for metastatic RCC. Nat. Rev. Urol. 17, 73–74 (2020).

    Article  PubMed  Google Scholar 

  3. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022).

    Article  PubMed  Google Scholar 

  4. Flanigan, R. C. et al. Nephrectomy followed by interferon α-2b compared with interferon α-2b alone for metastatic renal-cell cancer. N. Engl. J. Med. 345, 1655–1659 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Mickisch, G. H. et al. Radical nephrectomy plus interferon-α-based immunotherapy compared with interferon α alone in metastatic renal-cell carcinoma: a randomised trial. Lancet 358, 966–970 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Bex, A. et al. Comparison of immediate vs deferred cytoreductive nephrectomy in patients with synchronous metastatic renal cell carcinoma receiving Sunitinib: the SURTIME randomized clinical trial. JAMA Oncol. 5, 164–170 (2019).

    Article  PubMed  Google Scholar 

  7. Mejean, A. et al. Sunitinib alone or after nephrectomy in metastatic renal-cell carcinoma. N. Engl. J. Med. 379, 417–427 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Larcher, A. et al. Cytoreductive nephrectomy in metastatic patients with signs or symptoms: implications for renal cell carcinoma guidelines. Eur. Urol. 78, 321–326 (2020).

    Article  PubMed  Google Scholar 

  9. Noe, A. et al. Comparison of pre-treatment MSKCC and IMDC prognostic risk models in patients with synchronous metastatic renal cell carcinoma treated in the era of targeted therapy. World J. Urol. 34, 1067–1072 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Silagy, A. W. et al. Evolving biological associations of upfront cytoreductive nephrectomy in metastatic renal cell carcinoma. Cancer 127, 3946–3956 (2021).

    Article  PubMed  Google Scholar 

  11. Psutka, S. P., Chang, S. L., Cahn, D., Uzzo, R. G. & McGregor, B. A. Reassessing the role of cytoreductive nephrectomy for metastatic renal cell carcinoma in 2019. Am. Soc. Clin. Oncol. Educ. Book. 39, 276–283 (2019).

    Article  PubMed  Google Scholar 

  12. Okada, S. L. et al. Conditioned media from the renal cell carcinoma cell line 786.O drives human blood monocytes to a monocytic myeloid-derived suppressor cell phenotype. Cell Immunol. 323, 49–58 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Wu, Y., Yi, M., Niu, M., Mei, Q. & Wu, K. Myeloid-derived suppressor cells: an emerging target for anticancer immunotherapy. Mol. Cancer 21, 184 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Monu, N. R. & Frey, A. B. Myeloid-derived suppressor cells and anti-tumor T cells: a complex relationship. Immunol. Invest. 41, 595–613 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lahn, M. et al. Pro-inflammatory and T cell inhibitory cytokines are secreted at high levels in tumor cell cultures of human renal cell carcinoma. Eur. Urol. 35, 70–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Zhao, Y., Niu, C. & Cui, J. Gamma-delta (γδ) T cells: friend or foe in cancer development? J. Transl. Med. 16, 3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Uzzo, R. G. et al. Mechanisms of apoptosis in T cells from patients with renal cell carcinoma. Clin. Cancer Res. 5, 1219–1229 (1999).

    CAS  PubMed  Google Scholar 

  18. Li, L. et al. Skewed T-helper (Th)1/2- and Th17/T regulatory cell balances in patients with renal cell carcinoma. Mol. Med. Rep. 11, 947–953 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Anker, J., Miller, J., Taylor, N., Kyprianou, N. & Tsao, C. K. From bench to bedside: how the tumor microenvironment is impacting the future of immunotherapy for renal cell carcinoma. Cells https://doi.org/10.3390/cells10113231 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Prinz, P. U. et al. NK-cell dysfunction in human renal carcinoma reveals diacylglycerol kinase as key regulator and target for therapeutic intervention. Int. J. Cancer 135, 1832–1841 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Xia, Y. et al. Negative regulation of tumor-infiltrating NK cell in clear cell renal cell carcinoma patients through the exosomal pathway. Oncotarget 8, 37783–37795 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pantuck, A. J., Belldegrun, A. S. & Figlin, R. A. Cytoreductive nephrectomy for metastatic renal cell carcinoma: is it still imperative in the era of targeted therapy? Clin. Cancer Res. 13, 693s–696s (2007).

    Article  PubMed  Google Scholar 

  23. Senbabaoglu, Y. et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol. 17, 231 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lucarelli, G. et al. Integrated multi-omics characterization reveals a distinctive metabolic signature and the role of NDUFA4L2 in promoting angiogenesis, chemoresistance, and mitochondrial dysfunction in clear cell renal cell carcinoma. Aging 10, 3957–3985 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Platten, M., Nollen, E. A. A., Röhrig, U. F., Fallarino, F. & Opitz, C. A. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat. Rev. Drug Discov. 18, 379–401 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Lucarelli, G. et al. Activation of the kynurenine pathway predicts poor outcome in patients with clear cell renal cell carcinoma. Urol. Oncol. 35, 461 e415–461 e427 (2017).

    Article  Google Scholar 

  27. Li, H. et al. Metabolomic adaptations and correlates of survival to immune checkpoint blockade. Nat. Commun. 10, 4346 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Turajlic, S. et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx renal. Cell 173, 581–594 e512 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mitchell, T. J. et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell 173, 611–623.e617 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Figlin, R. A. Renal cell carcinoma: management of advanced disease. J. Urol. 161, 381–386 (1999). discussion 386-387.

    Article  CAS  PubMed  Google Scholar 

  31. Dr Hall, B. & Abel, E. J. The evolving role of metastasectomy for patients with metastatic renal cell carcinoma. Urol. Clin. North Am. 47, 379–388 (2020).

    Article  PubMed  Google Scholar 

  32. Kierney, P. C., van Heerden, J. A., Segura, J. W. & Weaver, A. L. Surgeon’s role in the management of solitary renal cell carcinoma metastases occurring subsequent to initial curative nephrectomy: an institutional review. Ann. Surg. Oncol. 1, 345–352 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Tolia, B. M. & Whitmore, W. F. Jr. Solitary metastasis from renal cell carcinoma. J. Urol. 114, 836–838 (1975).

    Article  CAS  PubMed  Google Scholar 

  34. Marcus, S. G. et al. Regression of metastatic renal cell carcinoma after cytoreductive nephrectomy. J. Urol. 150, 463–466 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Wood, C. G. The role of cytoreductive nephrectomy in the management of metastatic renal cell carcinoma. Urol. Clin. North Am. 30, 581–588 (2003).

    Article  PubMed  Google Scholar 

  36. Janiszewska, A. D., Poletajew, S. & Wasiutynski, A. Spontaneous regression of renal cell carcinoma. Contemp. Oncol. 17, 123–127 (2013).

    Google Scholar 

  37. Milowsky, M. I. & Nanus, D. M. Advanced renal cell carcinoma. Curr. Treat. Options Oncol. 2, 437–445 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Topalian, S. L. et al. Immunotherapy of patients with advanced cancer using tumor-infiltrating lymphocytes and recombinant interleukin-2: a pilot study. J. Clin. Oncol. 6, 839–853 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Rosenberg, S. A. et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N. Engl. J. Med. 316, 889–897 (1987).

    Article  CAS  PubMed  Google Scholar 

  40. Robertson, C. N. et al. Preparative cytoreductive surgery in patients with metastatic renal cell carcinoma treated with adoptive immunotherapy with interleukin-2 or interleukin-2 plus lymphokine activated killer cells. J. Urol. 144, 614–617 (1990). discussion 617-618.

    Article  CAS  PubMed  Google Scholar 

  41. Walther, M. M., Yang, J. C., Pass, H. I., Linehan, W. M. & Rosenberg, S. A. Cytoreductive surgery before high dose interleukin-2 based therapy in patients with metastatic renal cell carcinoma. J. Urol. 158, 1675–1678 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Bennett, R. T., Lerner, S. E., Taub, H. C., Dutcher, J. P. & Fleischmann, J. Cytoreductive surgery for stage IV renal cell carcinoma. J. Urol. 154, 32–34 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Flanigan, R. C. et al. Cytoreductive nephrectomy in patients with metastatic renal cancer: a combined analysis. J. Urol. 171, 1071–1076 (2004).

    Article  PubMed  Google Scholar 

  44. Pantuck, A. J., Belldegrun, A. S. & Figlin, R. A. Nephrectomy and interleukin-2 for metastatic renal-cell carcinoma. N. Engl. J. Med. 345, 1711–1712 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Zini, L. et al. Population-based assessment of survival after cytoreductive nephrectomy versus no surgery in patients with metastatic renal cell carcinoma. Urology 73, 342–346 (2009).

    Article  PubMed  Google Scholar 

  46. Rini, B. I. & Campbell, S. C. The evolving role of surgery for advanced renal cell carcinoma in the era of molecular targeted therapy. J. Urol. 177, 1978–1984 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Abel, E. J. & Wood, C. G. Cytoreductive nephrectomy for metastatic RCC in the era of targeted therapy. Nat. Rev. Urol. 6, 375–383 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Escudier, B. et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370, 2103–2111 (2007).

    Article  PubMed  Google Scholar 

  50. Motzer, R. J. et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372, 449–456 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Motzer, R. J. et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356, 115–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Rini, B. I. et al. Bevacizumab plus interferon α compared with interferon α monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. J. Clin. Oncol. 26, 5422–5428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hudes, G. et al. Temsirolimus, interferon α, or both for advanced renal-cell carcinoma. N. Engl. J. Med. 356, 2271–2281 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Choueiri, T. K. et al. The impact of cytoreductive nephrectomy on survival of patients with metastatic renal cell carcinoma receiving vascular endothelial growth factor targeted therapy. J. Urol. 185, 60–66 (2011).

    Article  PubMed  Google Scholar 

  55. Heng, D. Y. et al. Cytoreductive nephrectomy in patients with synchronous metastases from renal cell carcinoma: results from the International Metastatic Renal Cell Carcinoma Database Consortium. Eur. Urol. 66, 704–710 (2014).

    Article  PubMed  Google Scholar 

  56. Hanna, N. et al. Survival analyses of patients with metastatic renal cancer treated with targeted therapy with or without cytoreductive nephrectomy: a national cancer data base study. J. Clin. Oncol. 34, 3267–3275 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Petrelli, F. et al. Cytoreductive nephrectomy in metastatic renal cell carcinoma treated with targeted therapies: a systematic review with a meta-analysis. Clin. Genitourin. Cancer 14, 465–472 (2016).

    Article  PubMed  Google Scholar 

  58. Garcia-Perdomo, H. A., Zapata-Copete, J. A. & Castillo-Cobaleda, D. F. Role of cytoreductive nephrectomy in the targeted therapy era: a systematic review and meta-analysis. Investig. Clin. Urol. 59, 2–9 (2018).

    Article  PubMed  Google Scholar 

  59. Heng, D. Y. et al. Prognostic factors for overall survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor-targeted agents: results from a large, multicenter study. J. Clin. Oncol. 27, 5794–5799 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Culp, S. H. et al. Can we better select patients with metastatic renal cell carcinoma for cytoreductive nephrectomy? Cancer 116, 3378–3388 (2010).

    Article  PubMed  Google Scholar 

  61. Mathieu, R. et al. Nephrectomy improves overall survival in patients with metastatic renal cell carcinoma in cases of favorable MSKCC or ECOG prognostic features. Urol. Oncol. 33, 339.e9-15 (2015).

    Article  PubMed  Google Scholar 

  62. Motzer, R. J. & Russo, P. Cytoreductive nephrectomy — patient selection is key. N. Engl. J. Med. 379, 481–482 (2018).

    Article  PubMed  Google Scholar 

  63. Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378, 1277–1290 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pierorazio, P. M. et al. Outcome after cytoreductive nephrectomy for metastatic renal cell carcinoma is predicted by fractional percentage of tumour volume removed. BJU Int. 100, 755–759 (2007).

    Article  PubMed  Google Scholar 

  65. Barbastefano, J. et al. Association of percentage of tumour burden removed with debulking nephrectomy and progression-free survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor-targeted therapy. BJU Int. 106, 1266–1269 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Fallick, M. L., McDermott, D. F., LaRock, D., Long, J. P. & Atkins, M. B. Nephrectomy before interleukin-2 therapy for patients with metastatic renal cell carcinoma. J. Urol. 158, 1691–1695 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Bhindi, B. et al. Systematic review of the role of cytoreductive nephrectomy in the targeted therapy era and beyond: an individualized approach to metastatic renal cell carcinoma. Eur. Urol. 75, 111–128 (2019).

    Article  PubMed  Google Scholar 

  68. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rini, B. I. et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1116–1127 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Motzer, R. J. et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1103–1115 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dilme, R. V. et al. Cytoreductive nephrectomy in the management of metastatic renal cell carcinoma: is there still a debate. Curr. Urol. Rep. 22, 54 (2021).

    Article  PubMed  Google Scholar 

  72. Singla, N. et al. Improved survival after cytoreductive nephrectomy for metastatic renal cell carcinoma in the contemporary immunotherapy era: an analysis of the National Cancer Database. Urol. Oncol. 38, 604.e9–604.e17 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Bakouny, Z. et al. Upfront cytoreductive nephrectomy for metastatic renal cell carcinoma treated with immune checkpoint inhibitors or targeted therapy: an observational study from the international metastatic renal cell carcinoma database consortium. Eur. Urol. 83, 145–151 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. Aarhus University Hospital. US National Library of Medicine ClinicalTrials.gov NCT03977571 https://clinicaltrials.gov/ct2/show/NCT03977571 (2022).

  75. National Cancer Institute. US National Library of Medicine ClinicalTrials.gov NCT04510597 https://clinicaltrials.gov/ct2/show/NCT04510597 (2022).

  76. Motzer, R. J. et al. Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J. Clin. Oncol. 17, 2530–2540 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. McIntosh, A. G. et al. Optimizing patient selection for cytoreductive nephrectomy based on outcomes in the contemporary era of systemic therapy. Cancer 126, 3950–3960 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Campbell, S. C., Flanigan, R. C. & Clark, J. I. Nephrectomy in metastatic renal cell carcinoma. Curr. Treat. Options Oncol. 4, 363–372 (2003).

    Article  PubMed  Google Scholar 

  79. Flanigan, R. C. Debulking nephrectomy in metastatic renal cancer. Clin. Cancer Res. 10, 6335S–6341S (2004).

    Article  PubMed  Google Scholar 

  80. Motzer, R. J., Bacik, J., Murphy, B. A., Russo, P. & Mazumdar, M. Interferon-α as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. J. Clin. Oncol. 20, 289–296 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Leibovich, B. C. et al. A scoring algorithm to predict survival for patients with metastatic clear cell renal cell carcinoma: a stratification tool for prospective clinical trials. J. Urol. 174, 1759–1763 (2005). discussion 1763.

    Article  PubMed  Google Scholar 

  82. Zisman, A. et al. Improved prognostication of renal cell carcinoma using an integrated staging system. J. Clin. Oncol. 19, 1649–1657 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Frank, I. et al. An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN score. J. Urol. 168, 2395–2400 (2002).

    Article  PubMed  Google Scholar 

  84. Yaycioglu, O. et al. Prognostic assessment of nonmetastatic renal cell carcinoma: a clinically based model. Urology 58, 141–145 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Karakiewicz, P. I. et al. Conditional survival predictions after nephrectomy for renal cell carcinoma. J. Urol. 182, 2607–2612 (2009).

    Article  PubMed  Google Scholar 

  86. Cindolo, L. et al. A preoperative clinical prognostic model for non-metastatic renal cell carcinoma. BJU Int. 92, 901–905 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Margulis, V. et al. Development of accurate models for individualized prediction of survival after cytoreductive nephrectomy for metastatic renal cell carcinoma. Eur. Urol. 63, 947–952 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Westerman, M. E. et al. Survival following cytoreductive nephrectomy: a comparison of existing prognostic models. BJU Int. 126, 745–753 (2020).

    Article  PubMed  Google Scholar 

  89. Esdaille, A. R. & Abel, E. J. Evolution of risk stratification systems is critical for improving patient selection for cytoreductive nephrectomy. Cancer 127, 3920–3923 (2021).

    Article  PubMed  Google Scholar 

  90. Wang, P., Chen, Y. & Wang, C. Beyond tumor mutation burden: tumor neoantigen burden as a biomarker for immunotherapy and other types of therapy. Front. Oncol. 11, 672677 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Blank, C. U. et al. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat. Med. 24, 1655–1661 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. MacFarlane, A. W. et al. PD-1 expression on peripheral blood cells increases with stage in renal cell carcinoma patients and is rapidly reduced after surgical tumor resection. Cancer Immunol. Res. 2, 320–331 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Abel, E. J. et al. Primary tumor response to targeted agents in patients with metastatic renal cell carcinoma. Eur. Urol. 59, 10–15 (2011).

    Article  PubMed  Google Scholar 

  95. Panian, J. et al. Pathologic outcomes at cytoreductive nephrectomy (CN) following immunotherapy (IO) for patients with advanced renal cell carcinoma (RCC). J. Clin. Oncol. 40, 334–334 (2022).

    Article  Google Scholar 

  96. Choueiri, T. K. et al. Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 384, 829–841 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: extended follow-up of efficacy and safety results from a randomised, controlled, phase 3 trial. Lancet Oncol. 20, 1370–1385 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Meerveld-Eggink, A. et al. Primary renal tumour response in patients treated with nivolumab and ipilimumab for metastatic renal cell carcinoma: real-world data assessment. Eur. Urol. Open. Sci. 35, 54–58 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Albiges, L. et al. Safety and efficacy of nivolumab in metastatic renal cell carcinoma (mRCC): final analysis from the NIVOREN GETUG AFU 26 study. J. Clin. Oncol. 37, 542–542 (2019).

    Article  Google Scholar 

  100. Courcier, J. et al. Primary renal tumour response in patients treated with nivolumab for metastatic renal cell carcinoma: results from the GETUG-AFU 26 NIVOREN trial. Eur. Urol. 80, 325–329 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Carlo, M. I. et al. Phase II study of neoadjuvant nivolumab in patients with locally advanced clear cell renal cell carcinoma undergoing nephrectomy. Eur. Urol. 81, 570–573 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gorin, M. A. et al. Neoadjuvant nivolumab in patients with high-risk nonmetastatic renal cell carcinoma. Eur. Urol. Oncol. 5, 113–117 (2022).

    Article  PubMed  Google Scholar 

  103. Abel, E. J. et al. Early primary tumor size reduction is an independent predictor of improved overall survival in metastatic renal cell carcinoma patients treated with sunitinib. Eur. Urol. 60, 1273–1279 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Powles, T. et al. Safety and efficacy of pazopanib therapy prior to planned nephrectomy in metastatic clear cell renal cancer. JAMA Oncol. 2, 1303–1309 (2016).

    Article  PubMed  Google Scholar 

  105. Mejean, A. et al. Sunitinib alone or after nephrectomy for patients with metastatic renal cell carcinoma: is there still a role for cytoreductive nephrectomy. Eur. Urol. 80, 417–424 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Bhindi, B. et al. Comparative survival following initial cytoreductive nephrectomy versus initial targeted therapy for metastatic renal cell carcinoma. J. Urol. 200, 528–534 (2018).

    Article  PubMed  Google Scholar 

  107. Macleod, L. C. et al. Comparative effectiveness of initial surgery vs initial systemic therapy for metastatic kidney cancer in the targeted therapy era: analysis of a population-based cohort. Urology 113, 146–152 (2018).

    Article  PubMed  Google Scholar 

  108. Abel, E. J. et al. Multi-quadrant biopsy technique improves diagnostic ability in large heterogeneous renal masses. J. Urol. 194, 886–891 (2015).

    Article  PubMed  Google Scholar 

  109. Woldu, S. L. et al. Incidence and outcomes of delayed targeted therapy after cytoreductive nephrectomy for metastatic renal-cell carcinoma: a nationwide cancer registry study. Clin. Genitourin. Cancer 16, e1221–e1235 (2018).

    Article  PubMed  Google Scholar 

  110. Roussel, E. et al. Too good for CARMENA: criteria associated with long systemic therapy free intervals post cytoreductive nephrectomy for metastatic clear cell renal cell carcinoma. Scand. J. Urol. 54, 493–499 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Rini, B. I. et al. Active surveillance in metastatic renal-cell carcinoma: a prospective, phase 2 trial. Lancet Oncol. 17, 1317–1324 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Zhang, Y. et al. Stereotactic ablative radiation therapy (SAbR) used to defer systemic therapy in oligometastatic renal cell cancer. Int. J. Radiat. Oncol. Biol. Phys. 105, 367–375 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tang, C. et al. Definitive radiotherapy in lieu of systemic therapy for oligometastatic renal cell carcinoma: a single-arm, single-centre, feasibility, phase 2 trial. Lancet Oncol. 22, 1732–1739 (2021).

    Article  PubMed  Google Scholar 

  114. Hannan, R. et al. Phase II trial of stereotactic ablative radiation for oligoprogressive metastatic kidney cancer. Eur. Urol. Oncol. https://doi.org/10.1016/j.euo.2021.12.001 (2021).

    Article  Google Scholar 

  115. de Velasco, G. et al. Comprehensive analysis of survival outcomes in non-clear cell renal cell carcinoma patients treated in clinical trials. Clin. Genitourin. Cancer 15, 652–660.e651 (2017).

    Article  PubMed  Google Scholar 

  116. Pal, S. K. et al. A comparison of sunitinib with cabozantinib, crizotinib, and savolitinib for treatment of advanced papillary renal cell carcinoma: a randomised, open-label, phase 2 trial. Lancet 397, 695–703 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Armstrong, A. J. et al. Everolimus versus sunitinib for patients with metastatic non-clear cell renal cell carcinoma (ASPEN): a multicentre, open-label, randomised phase 2 trial. Lancet Oncol. 17, 378–388 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tannir, N. M. et al. Everolimus versus sunitinib prospective evaluation in metastatic non-clear cell renal cell carcinoma (ESPN): a randomized multicenter phase 2 trial. Eur. Urol. 69, 866–874 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Kroeger, N. et al. Metastatic non-clear cell renal cell carcinoma treated with targeted therapy agents: characterization of survival outcome and application of the International mRCC Database Consortium criteria. Cancer 119, 2999–3006 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Motzer, R. J. et al. Kidney cancer, version 3.2022, NCCN clinical practice guidelines in oncology. J. Natl Compr. Cancer Netw. 20, 71–90 (2022).

    Article  Google Scholar 

  121. Graham, J. et al. Cytoreductive nephrectomy in metastatic papillary renal cell carcinoma: results from the international metastatic renal cell carcinoma database consortium. Eur. Urol. Oncol. 2, 643–648 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Aizer, A. A. et al. Cytoreductive nephrectomy in patients with metastatic non-clear-cell renal cell carcinoma (RCC). BJU Int. 113, E67–E74 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Alnimer, Y., Qasrawi, A., Yan, D. & Wang, P. Prognostic impact of cytoreductive nephrectomy in patients with metastatic renal cell carcinoma: data from a large population-based database. Urol. J. 19, 111–119 (2021).

    PubMed  Google Scholar 

  124. Marchioni, M. et al. Survival after cytoreductive nephrectomy in metastatic non-clear cell renal cell carcinoma patients: a population-based study. Eur. Urol. Focus. 5, 488–496 (2019).

    Article  PubMed  Google Scholar 

  125. Luzzago, S. et al. Association between systemic therapy and/or cytoreductive nephrectomy and survival in contemporary metastatic non-clear cell renal cell carcinoma patients. Eur. Urol. Focus. 7, 598–607 (2021).

    Article  PubMed  Google Scholar 

  126. Minnillo, B. J. et al. Cytoreductive nephrectomy in the modern era: predictors of use, morbidity, and survival. Can. Urol. Assoc. J. 11, E184–E191 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Pignot, G. et al. Nephrectomy after complete response to immune checkpoint inhibitors for metastatic renal cell carcinoma: a new surgical challenge? Eur. Urol. 77, 761–763 (2020).

    Article  PubMed  Google Scholar 

  128. Singla, N. et al. Pathologic response and surgical outcomes in patients undergoing nephrectomy following receipt of immune checkpoint inhibitors for renal cell carcinoma. Urol. Oncol. 37, 924–931 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tennenbaum, D. M. et al. Genomic alterations as predictors of survival among patients within a combined cohort with clear cell renal cell carcinoma undergoing cytoreductive nephrectomy. Urol. Oncol. 35, 532.e537–532.e513 (2017).

    Article  Google Scholar 

  130. Ged, Y. & Voss, M. H. Novel emerging biomarkers to immunotherapy in kidney cancer. Ther. Adv. Med. Oncol. 13, 17588359211059367 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Ricciuti, B. et al. Association of high tumor mutation burden in non-small cell lung cancers with increased immune infiltration and improved clinical outcomes of PD-L1 blockade across PD-L1 expression levels. JAMA Oncol. 8, 1160–1168 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  133. McDermott, D. F. et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat. Med. 24, 749–757 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Labriola, M. K. et al. Characterization of tumor mutation burden, PD-L1 and DNA repair genes to assess relationship to immune checkpoint inhibitors response in metastatic renal cell carcinoma. J. Immunother. Cancer https://doi.org/10.1136/jitc-2019-000319 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Motzer, R. J. et al. Avelumab plus axitinib versus sunitinib in advanced renal cell carcinoma: biomarker analysis of the phase 3 JAVELIN Renal 101 trial. Nat. Med. 26, 1733–1741 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Motzer, R. J. et al. Molecular subsets in renal cancer determine outcome to checkpoint and angiogenesis blockade. Cancer Cell 38, 803–817.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wu, Q., Huang, G., Wei, W. & Liu, J. Molecular imaging of renal cell carcinoma in precision medicine. Mol. Pharm. https://doi.org/10.1021/acs.molpharmaceut.2c00034 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Bootsma, M. et al. Longitudinal molecular profiling of circulating tumor cells in metastatic renal cell carcinoma. J. Clin. Oncol. 40, 3633–3641 (2022).

    Article  CAS  PubMed  Google Scholar 

  139. Li, Y., Chen, P. & Chen, Z. Diagnostic value of circulating cell-free DNA for renal cell carcinoma: a meta-analysis. Transl. Cancer Res. 10, 2265–2276 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Marchioni, M. et al. Development of a novel risk score to select the optimal candidate for cytoreductive nephrectomy among patients with metastatic renal cell carcinoma. results from a multi-institutional registry (REMARCC). Eur. Urol. Oncol. 4, 256–263 (2021).

    Article  PubMed  Google Scholar 

  141. Klatte, T. et al. Prognostic effect of cytoreductive nephrectomy in synchronous metastatic renal cell carcinoma: a comparative study using inverse probability of treatment weighting. World J. Urol. 36, 417–425 (2018).

    Article  PubMed  Google Scholar 

  142. Patel, M. I., Beattie, K., Bang, A., Gurney, H. & Smith, D. P. Cytoreductive nephrectomy for metastatic renal cell carcinoma: inequities in access exist despite improved survival. Cancer Med. 6, 2188–2193 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Day, D. et al. Benefit from cytoreductive nephrectomy and the prognostic role of neutrophil-to-lymphocyte ratio in patients with metastatic renal cell carcinoma. Intern. Med. J. 46, 1291–1297 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. de Groot, S. et al. Survival in patients with primary metastatic renal cell carcinoma treated with sunitinib with or without previous cytoreductive nephrectomy: results from a population-based registry. Urology 95, 121–127 (2016).

    Article  PubMed  Google Scholar 

  145. Conti, S. L. et al. Utilization of cytoreductive nephrectomy and patient survival in the targeted therapy era. Int. J. Cancer 134, 2245–2252 (2014).

    CAS  Google Scholar 

  146. You, D. et al. The value of cytoreductive nephrectomy for metastatic renal cell carcinoma in the era of targeted therapy. J. Urol. 185, 54–59 (2011).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. E.J.A., A.D. and D.D.S. contributed substantially to discussion of the content. E.J.A., A.D. and D.D.S. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to E. Jason Abel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Stephen Culp, A. Ari Hakimi, Nirmish Singla and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Shapiro, D.D., Craig, J.K. et al. Understanding and integrating cytoreductive nephrectomy with immune checkpoint inhibitors in the management of metastatic RCC. Nat Rev Urol 20, 654–668 (2023). https://doi.org/10.1038/s41585-023-00776-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-023-00776-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing