Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Preclinical models of prostate cancer — modelling androgen dependency and castration resistance in vitro, ex vivo and in vivo

Abstract

Prostate cancer is well known to be dependent on the androgen receptor (AR) for growth and survival. Thus, AR is the main pharmacological target to treat this disease. However, after an initially positive response to AR-targeting therapies, prostate cancer will eventually evolve to castration-resistant prostate cancer, which is often lethal. Tumour growth was initially thought to become androgen-independent following treatments; however, results from molecular studies have shown that most resistance mechanisms involve the reactivation of AR. Consequently, tumour cells become resistant to castration — the blockade of testicular androgens — and not independent of AR per se. However, confusion still remains on how to properly define preclinical models of prostate cancer, including cell lines. Most cell lines were isolated from patients for cell culture after evolution of the tumour to castration-resistant prostate cancer, but not all of these cell lines are described as castration resistant. Moreover, castration refers to the blockade of testosterone production by the testes; thus, even the concept of “castration” in vitro is questionable. To ensure maximal transfer of knowledge from scientific research to the clinic, understanding the limitations and advantages of preclinical models, as well as how these models recapitulate cancer cell androgen dependency and can be used to study castration resistance mechanisms, is essential.

Key points

  • Androgens and androgen receptor (AR) are essential for prostate cancer progression from primary hormone-naive tumours to metastatic castration-resistant prostate cancer (CRPC).

  • Common prostate cancer cell lines used for scientific research, including AR-positive and AR-negative cells, all originate from patients with CRPC, but are often not described as CRPC. A standardized nomenclature is proposed to avoid any confusion.

  • Optimization of novel preclinical models such as patient-derived organoids and patient-derived xenografts will offer a complex multi-cell type environment to gain an improved understanding of prostate cancer landscape and evolution to CRPC.

  • Caution must be retained on how the hormonal environment of the prostate is reproduced using preclinical models; for example, castration in mice has different implications for steroid hormones compared with castration in humans.

  • Integration of prostate cancer endocrinology, including intracrinology, in preclinical models is essential to understand tumour biology and to facilitate transition from basic science to clinical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Androgen synthesis regulation and androgen receptor signalling inhibitors mode of action.
Fig. 2: Genomic alterations of the androgen receptor promote castration resistance in prostate cancer.

Similar content being viewed by others

References

  1. James, N., Lee, N. & Horton, R. Announcing the Lancet commission on prostate cancer comment. Lancet 397, 1865–1866 (2021).

    PubMed  Google Scholar 

  2. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    PubMed  Google Scholar 

  3. Zoubeidi, A. & Ghosh, P. M. Celebrating the 80th anniversary of hormone ablation for prostate cancer. Endocr. Relat. Cancer 28, T1–T10 (2021).

    PubMed  Google Scholar 

  4. Watson, P. A., Arora, V. K. & Sawyers, C. L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701–711 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gonthier, K., Poluri, R. T. K. & Audet-Walsh, É. Functional genomic studies reveal the androgen receptor as a master regulator of cellular energy metabolism in prostate cancer. J. Steroid Biochem. Mol. Biol. 191, 105367 (2019).

    CAS  PubMed  Google Scholar 

  6. Gonthier, K., Poluri, R. T. K., Weidmann, C., Tadros, M. & Audet-Walsh, É. Reprogramming of isocitrate dehydrogenases expression and activity by the androgen receptor in prostate cancer. Mol. Cancer Res. 17, 1699–1709 (2019).

    CAS  PubMed  Google Scholar 

  7. Audet-Walsh, É. et al. Nuclear mTOR acts as a transcriptional integrator of the androgen signaling pathway in prostate cancer. Genes Dev. 31, 1228–1242 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cornford, P. et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on prostate cancer. Part II. 2020 update: treatment of relapsing and metastatic prostate cancer. Eur. Urol. 79, 263–282 (2021).

    CAS  PubMed  Google Scholar 

  9. Wang, M. C. et al. Prostate antigen — a new potential marker for prostatic cancer. Prostate 2, 89–96 (1981).

    CAS  PubMed  Google Scholar 

  10. Stamey, T. A. et al. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N. Engl. J. Med. 317, 909–916 (1987).

    CAS  PubMed  Google Scholar 

  11. Stephan, C., Jung, K., Lein, M. & Diamandis, E. P. PSA and other tissue kallikreins for prostate cancer detection. Eur. J. Cancer 43, 1918–1926 (2007).

    CAS  PubMed  Google Scholar 

  12. Kim, J. & Coetzee, G. A. Prostate specific antigen gene regulation by androgen receptor. J. Cell Biochem. 93, 233–241 (2004).

    CAS  PubMed  Google Scholar 

  13. Wyatt, A. W. & Gleave, M. E. Targeting the adaptive molecular landscape of castration-resistant prostate cancer. EMBO Mol. Med. 7, 878–894 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang, J., Lin, B. & Li, B. Anti-androgen receptor therapies in prostate cancer: a brief update and perspective. Front. Oncol. 12, 865350 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Mottet, N. et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on prostate cancer-2020 update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur. Urol. 79, 243–262 (2021).

    CAS  PubMed  Google Scholar 

  16. Jamroze, A., Chatta, G. & Tang, D. G. Androgen receptor (AR) heterogeneity in prostate cancer and therapy resistance. Cancer Lett. 518, 1–9 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sharifi, N. & Auchus, R. J. Steroid biosynthesis and prostate cancer. Steroids 77, 719–726 (2012).

    CAS  PubMed  Google Scholar 

  18. Labrie, F., Dupont, A., Simard, J., Luuthe, V. & Belanger, A. Intracrinology — the basis for the rational design of endocrine therapy at all stages of prostate cancer. Eur. Urol. 24, 94–105 (1993).

    PubMed  Google Scholar 

  19. Litwin, M. S. & Tan, H. J. The diagnosis and treatment of prostate cancer a review. J. Am. Med. Assoc. 317, 2532–2542 (2017).

    Google Scholar 

  20. Klotz, L. et al. Maximal testosterone suppression in the management of recurrent and metastatic prostate cancer. Can. Urol. Assoc. J. 11, 16–23 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. Chi, K. et al. Treatment of mCRPC in the AR-axis-targeted therapy-resistant state. Ann. Oncol. 26, 2044–2056 (2015).

    CAS  PubMed  Google Scholar 

  22. Harris, W. P., Mostaghel, E. A., Nelson, P. S. & Montgomery, B. Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat. Clin. Pract. Urol. 6, 76–85 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bolla, M. et al. Duration of androgen suppression in the treatment of prostate cancer. N. Engl. J. Med. 360, 2516–2527 (2009).

    CAS  PubMed  Google Scholar 

  24. Gillessen, S. et al. Management of patients with advanced prostate cancer: the report of the advanced prostate cancer consensus conference APCCC 2017. Eur. Urol. 73, 178–211 (2018).

    PubMed  Google Scholar 

  25. Ryan, C. J. et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl. J. Med. 368, 138–148 (2013).

    CAS  PubMed  Google Scholar 

  26. James, N. D. et al. Abiraterone for prostate cancer not previously treated with hormone therapy. N. Engl. J. Med. 377, 338–351 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Fizazi, K. et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N. Engl. J. Med. 377, 352–360 (2017).

    CAS  PubMed  Google Scholar 

  28. De Bono, J. S. et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011).

    PubMed  PubMed Central  Google Scholar 

  29. Marchetti, P. M. & Barth, J. H. Clinical biochemistry of dihydrotestosterone. Ann. Clin. Biochem. 50, 95–107 (2013).

    CAS  PubMed  Google Scholar 

  30. Massie, C. E. et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J. 30, 2719–2733 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Swinnen, J. V., Ulrix, W., Heyns, W. & Verhoeven, G. Coordinate regulation of lipogenic gene expression by androgens: evidence for a cascade mechanism involving sterol regulatory element binding proteins. Proc. Natl Acad. Sci. USA 94, 12975–12980 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Audet-Walsh, É. et al. Androgen-dependent repression of ERRγ reprograms metabolism in prostate cancer. Cancer Res. 77, 378–389 (2017).

    CAS  PubMed  Google Scholar 

  33. Tennakoon, J. B. et al. Androgens regulate prostate cancer cell growth via an AMPK-PGC-1α-mediated metabolic switch. Oncogene 33, 5251–5261 (2014).

    CAS  PubMed  Google Scholar 

  34. Bader, D. A. et al. Mitochondrial pyruvate import is a metabolic vulnerability in androgen receptor-driven prostate cancer. Nat. Metab. 1, 70–85 (2019).

    CAS  PubMed  Google Scholar 

  35. Huggins, C. & Hodges, C. V. Studies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res. 1, 293–297 (1941).

    CAS  Google Scholar 

  36. Kluth, L. A. et al. The hypothalamic-pituitary-gonadal axis and prostate cancer: implications for androgen deprivation therapy. World J. Urol. 32, 669–676 (2014).

    CAS  PubMed  Google Scholar 

  37. Hauger, R. L., Saelzler, U. G., Pagadala, M. S. & Panizzon, M. S. The role of testosterone, the androgen receptor, and hypothalamic-pituitary-gonadal axis in depression in ageing men. Rev. Endocr. Metab. Disord. https://doi.org/10.1007/s11154-022-09767-0.

  38. Labrie, F. Blockade of testicular and adrenal androgens in prostate cancer treatment. Nat. Rev. Urol. 8, 73–85 (2011).

    CAS  PubMed  Google Scholar 

  39. Corti, M., Lorenzetti, S., Ubaldi, A., Zilli, R. & Marcoccia, D. Endocrine disruptors and prostate cancer. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23031216 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Robitaille, J. & Langlois, V. S. Consequences of steroid-5 α-reductase deficiency and inhibition in vertebrates. Gen. Comp. Endocrinol. https://doi.org/10.1016/j.ygcen.2020.113400 (2020).

    Article  PubMed  Google Scholar 

  41. Oettel, M. Testosterone metabolism, dose-response relationships and receptor polymorphisms: selected pharmacological/toxicological considerations on benefits versus risks of testosterone therapy in men. Aging Male 6, 230–256 (2003).

    CAS  PubMed  Google Scholar 

  42. Frawley, L. S. & Neill, J. D. Biphasic effects of estrogen on gonadotropin-releasing hormone-induced luteinizing hormone release in monolayer cultures of rat and monkey pituitary cells. Endocrinology 114, 659–663 (1984).

    CAS  PubMed  Google Scholar 

  43. Reis, L. O., Zani, E. L. & García-Perdomo, H. A. Estrogen therapy in patients with prostate cancer: a contemporary systematic review. Int. Urol. Nephrol. 50, 993–1003 (2018).

    CAS  PubMed  Google Scholar 

  44. Schally, A. V. Legends in urology. Can. J. Urol. 20, 6889–6892 (2013).

    PubMed  Google Scholar 

  45. Seidenfeld, J. et al. Single-therapy androgen suppression in men with advanced prostate cancer. Ann. Intern. Med. 132, 566–577 (2000).

    CAS  PubMed  Google Scholar 

  46. Lacoste, D., Dubé, D., Trudel, C., Bélanger, A. & Labrie, F. Normal gonadal functions and fertility after 23 months of treatment of prepubertal male and female dogs with the GnRh agonist [D-Trp6, des-Gly-NH210]GnRH ethylamide. J. Androl. 10, 456–465 (1989).

    CAS  PubMed  Google Scholar 

  47. Lacoste, D., Dubé, D., Bélanger, A. & Labrie, F. Effect of 2-week combination therapy with the luteinizing hormone-releasing hormone (LHRH) agonist [D-Trp6, des-Gly-NH210]LHRH ethylamide and the antiandrogen flutamide on prostate structure and steroid levels in the dog. Mol. Cell Endocrinol. 67, 131–138 (1989).

    CAS  PubMed  Google Scholar 

  48. Labrie, F. Medical castration with LHRH agonists: 25 years later with major benefits achieved on survival in prostate cancer. J. Androl. 25, 305–313 (2004).

    CAS  PubMed  Google Scholar 

  49. Betz, S. F., Zhu, Y.-F., Chen, C. & Struthers, R. S. Non-peptide gonadotropin-releasing hormone receptor antagonists. J. Med. Chem. 51, 3331–3348 (2008).

    CAS  PubMed  Google Scholar 

  50. Rouleau, M. et al. Discordance between testosterone measurement methods in castrated prostate cancer patients. Endocr. Connect. 8, 132–140 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Klotz, L. et al. Testosterone suppression in the treatment of recurrent or metastatic prostate cancer — a Canadian consensus statement. Can. Urol. Assoc. J. 12, 30–37 (2018).

    PubMed  Google Scholar 

  52. Ibáñez, L., Potau, N., Marcos, M. V. & de Zegher, F. Corticotropin-releasing hormone as adrenal androgen secretagogue. Pediatr. Res. 46, 351–353 (1999).

    PubMed  Google Scholar 

  53. Cutler, G. B. et al. Adrenarche: a survey of rodents, domestic animals, and primates. Endocrinology 103, 2112–2118 (1978).

    CAS  PubMed  Google Scholar 

  54. Labrie, F. Adrenal androgens and intracrinology. Semin. Reprod. Med. 22, 299–309 (2004).

    CAS  PubMed  Google Scholar 

  55. Berrehail, Z. et al. Sex steroid modulation of macrophages within the prostate tumor microenvironment. Am. J. Clin. Exp. Urol. 10, 98–110 (2022).

    PubMed  PubMed Central  Google Scholar 

  56. Toren, P. et al. Serum sex steroids as prognostic biomarkers in patients receiving androgen deprivation therapy for recurrent prostate cancer: a post hoc analysis of the PR.7 trial. Clin. Cancer Res. 24, 5305–5312 (2018).

    CAS  PubMed  Google Scholar 

  57. Lévesque, E. et al. A comprehensive analysis of steroid hormones and progression of localized high-risk prostate cancer. Cancer Epidemiol. Biomark. Prev. 28, 701–706 (2019).

    Google Scholar 

  58. Moghissi, E., Ablan, F. & Horton, R. Origin of plasma androstanediol glucuronide in men. J. Clin. Endocrinol. Metab. 59, 417–421 (1984).

    CAS  PubMed  Google Scholar 

  59. Bélanger, A., Brochu, M. & Cliche, J. Levels of plasma steroid glucuronides in intact and castrated men with prostatic cancer. J. Clin. Endocrinol. Metab. 62, 812–815 (1986).

    PubMed  Google Scholar 

  60. Labrie, F. Intracrinology. Mol. Cell. Endocrinol. 78, C113–C118 (1991).

    CAS  PubMed  Google Scholar 

  61. Labrie, C., Belanger, A. & Labrie, F. Androgenic activity of dehydroepiandrosterone and androstenedione in the rat ventral prostate. Endocrinology 123, 1412–1417 (1988).

    CAS  PubMed  Google Scholar 

  62. Logothetis, C. J., Efstathiou, E., Manuguid, F. & Kirkpatrick, P. Abiraterone acetate. Nat. Rev. Drug Discov. 10, 573–574 (2011).

    CAS  PubMed  Google Scholar 

  63. Barrie, S. E. et al. Pharmacology of novel steroidal inhibitors of cytochrome P45017 (17α-hydroxylase/C17–20 lyase. J. Steroid Biochem. Mol. Biol. 50, 267–273 (1994).

    CAS  PubMed  Google Scholar 

  64. Potter, G. A., Barrie, S. E., Jarman, M. & Rowlands, M. G. Novel steroidal inhibitors of human cytochrome P45017α-hydroxylase-C17,20-lyase): potential agents for the treatment of prostatic cancer. J. Med. Chem. 38, 2463–2471 (1995).

    CAS  PubMed  Google Scholar 

  65. Rowlands, M. G. et al. Esters of 3-pyridylacetic acid that combine potent inhibition of 17α-hydroxylase/C17,20-lyase (cytochrome P45017α) with resistance to esterase hydrolysis. J. Med. Chem. 38, 4191–4197 (1995).

    CAS  PubMed  Google Scholar 

  66. Haidar, S., Ehmer, P. B., Barassin, S., Batzl-Hartmann, C. & Hartmann, R. W. Effects of novel 17α-hydroxylase/C17, 20-lyase (P450 17, CYP 17) inhibitors on androgen biosynthesis in vitro and in vivo. J. Steroid Biochem. Mol. Biol. 84, 555–562 (2003).

    CAS  PubMed  Google Scholar 

  67. Labrie, F. Prostate cancer bicalutamide dose increase in castration-resistant disease. Nat. Rev. Urol. 12, 132–133 (2015).

    CAS  PubMed  Google Scholar 

  68. Student, S., Hejmo, T., Poterala-Hejmo, A., Lesniak, A. & Buldak, R. Anti-androgen hormonal therapy for cancer and other diseases. Eur. J. Pharmacol. https://doi.org/10.1016/j.ejphar.2019.172783 (2020).

    Article  PubMed  Google Scholar 

  69. Clegg, N. J. et al. ARN-509: a novel antiandrogen for prostate cancer treatment. Cancer Res. 72, 1494–1503 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Moilanen, A. M. et al. Discovery of ODM-201, a new-generation androgen receptor inhibitor targeting resistance mechanisms to androgen signaling-directed prostate cancer therapies. Sci. Rep. 5, 12007 (2015).

    PubMed  PubMed Central  Google Scholar 

  71. Tran, C. et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324, 787–790 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Rodriguez-Vida, A., Galazi, M., Rudman, S., Chowdhury, S. & Sternberg, C. N. Enzalutamide for the treatment of metastatic castration-resistant prostate cancer. Drug Des. Dev. Ther. 9, 3325–3339 (2015).

    CAS  Google Scholar 

  73. Saad, F. & Hotte, S. J. Guidelines for the management of castrate-resistant prostate cancer. Can. Urol. Assoc. J. 4, 380–384 (2010).

    PubMed  PubMed Central  Google Scholar 

  74. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Montgomery, R. B. et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 68, 4447–4454 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ylitalo, E. B. et al. Subgroups of castration-resistant prostate cancer bone metastases defined through an inverse relationship between androgen receptor activity and immune response. Eur. Urol. 71, 776–787 (2017).

    PubMed  Google Scholar 

  77. Taylor, B. S. et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11–22 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Abeshouse, A. et al. The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).

    CAS  Google Scholar 

  79. Annala, M. et al. Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer. Cancer Discov. 8, 444–457 (2018).

    CAS  PubMed  Google Scholar 

  80. Grasso, C. S. et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239–243 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Chang, K. H. et al. A gain-of-function mutation in DHT synthesis in castration-resistant prostate cancer. Cell 154, 1074–1084 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Dai, C. et al. Direct metabolic interrogation of dihydrotestosterone biosynthesis from adrenal precursors in primary prostatectomy tissues. Clin. Cancer Res. 23, 6351–6362 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, Z. F. et al. Redirecting abiraterone metabolism to fine-tune prostate cancer anti-androgen therapy. Nature 533, 547 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Taplin, M. E. et al. Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res. 59, 2511–2515 (1999).

    CAS  PubMed  Google Scholar 

  85. Dehm, S. M. & Tindall, D. J. Alternatively spliced androgen receptor variants. Endocr. Relat. Cancer 18, R183–R196 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Audet-Walsh, É., Yee, T., Tam, I. S. & Giguère, V. Inverse regulation of DHT synthesis enzymes 5α-reductase types 1 and 2 by the androgen receptor in prostate cancer. Endocrinology 158, 1015–1021 (2017).

    CAS  PubMed  Google Scholar 

  87. Coutinho, I., Day, T. K., Tilley, W. D. & Selth, L. A. Androgen receptor signaling in castration-resistant prostate cancer: a lesson in persistence. Endocr. Relat. Cancer 23, T179–T197 (2016).

    CAS  PubMed  Google Scholar 

  88. Lu, J., Van der Steen, T. & Tindall, D. J. Are androgen receptor variants a substitute for the full-length receptor? Nat. Rev. Urol. 12, 137–144 (2015).

    CAS  PubMed  Google Scholar 

  89. Zhu, Y. & Luo, J. Regulation of androgen receptor variants in prostate cancer. Asian J. Urol. 7, 251–257 (2020).

    PubMed  PubMed Central  Google Scholar 

  90. Visakorpi, T. et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat. Genet. 9, 401–406 (1995).

    CAS  PubMed  Google Scholar 

  91. Koivisto, P. et al. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res. 57, 314–319 (1997).

    CAS  PubMed  Google Scholar 

  92. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    PubMed  Google Scholar 

  93. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

    PubMed  PubMed Central  Google Scholar 

  94. Viswanathan, S. R. et al. Structural alterations driving castration-resistant prostate cancer revealed by linked-read genome sequencing. Cell 174, 433–447.e419 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Takeda, D. Y. et al. A somatically acquired enhancer of the androgen receptor is a noncoding driver in advanced prostate cancer. Cell 174, 422–432.e413 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Veldscholte, J. et al. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem. Biophys. Res. Commun. 173, 534–540 (1990).

    CAS  PubMed  Google Scholar 

  97. Gottlieb, B., Beitel, L. K., Nadarajah, A., Paliouras, M. & Trifiro, M. The androgen receptor gene mutations database: 2012 update. Hum. Mutat. 33, 887–894 (2012).

    CAS  PubMed  Google Scholar 

  98. Thin, T. H. et al. Isolation and characterization of androgen receptor mutant, AR(M749L), with hypersensitivity to 17-β estradiol treatment. J. Biol. Chem. 278, 7699–7708 (2003).

    CAS  PubMed  Google Scholar 

  99. Tan, J. et al. Dehydroepiandrosterone activates mutant androgen receptors expressed in the androgen-dependent human prostate cancer xenograft CWR22 and LNCaP cells. Mol. Endocrinol. 11, 450–459 (1997).

    CAS  PubMed  Google Scholar 

  100. Culig, Z. et al. Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol. Endocrinol. 7, 1541–1550 (1993).

    CAS  PubMed  Google Scholar 

  101. Zhao, X. Y. et al. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat. Med. 6, 703–706 (2000).

    CAS  PubMed  Google Scholar 

  102. Korpal, M. et al. An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide). Cancer Discov. 3, 1030–1043 (2013).

    CAS  PubMed  Google Scholar 

  103. Balbas, M. D. et al. Overcoming mutation-based resistance to antiandrogens with rational drug design. Elife 2, e00499 (2013).

    PubMed  PubMed Central  Google Scholar 

  104. Prekovic, S. et al. The effect of F877L and T878A mutations on androgen receptor response to enzalutamide. Mol. Cancer Ther. 15, 1702–1712 (2016).

    CAS  PubMed  Google Scholar 

  105. Hara, T. et al. Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome. Cancer Res. 63, 149–153 (2003).

    CAS  PubMed  Google Scholar 

  106. Scholtes, C. & Giguère, V. Transcriptional control of energy metabolism by nuclear receptors. Nat. Rev. Mol. Cell Biol. 23, 750–770 (2022).

    CAS  PubMed  Google Scholar 

  107. Gelmann, E. P. Molecular biology of the androgen receptor. J. Clin. Oncol. 20, 3001–3015 (2002).

    CAS  PubMed  Google Scholar 

  108. Wright, C. J., Smith, C. W. J. & Jiggins, C. D. Alternative splicing as a source of phenotypic diversity. Nat. Rev. Genet. 23, 697–710 (2022).

    CAS  PubMed  Google Scholar 

  109. Guo, Z. Y. et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res. 69, 2305–2313 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Hu, R. et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 69, 16–22 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Lu, C. & Luo, J. Decoding the androgen receptor splice variants. Transl. Androl. Urol. 2, 178–186 (2013).

    PubMed  PubMed Central  Google Scholar 

  112. Antonarakis, E. S. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028–1038 (2014).

    PubMed  PubMed Central  Google Scholar 

  113. Paschalis, A. et al. Alternative splicing in prostate cancer. Nat. Rev. Clin. Oncol. 15, 663–675 (2018).

    CAS  PubMed  Google Scholar 

  114. Shah, K. et al. Androgen receptor signaling regulates the transcriptome of prostate cancer cells by modulating global alternative splicing. Oncogene 39, 6172–6189 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Germain, L. et al. Alternative splicing regulation by the androgen receptor in prostate cancer cells. J. Steroid Biochem. Mol. Biol. 202, 105710 (2020).

    CAS  PubMed  Google Scholar 

  116. Locke, J. A. et al. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res. 68, 6407–6415 (2008).

    CAS  PubMed  Google Scholar 

  117. Auchus, R. J. The backdoor pathway to dihydrotestosterone. Trends Endocrinol. Metab. 15, 432–438 (2004).

    CAS  PubMed  Google Scholar 

  118. Stanbrough, M. et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res. 66, 2815–2825 (2006).

    CAS  PubMed  Google Scholar 

  119. Cai, C. et al. Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Res. 71, 6503–6513 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Mohler, J. L. et al. Activation of the androgen receptor by intratumoral bioconversion of androstanediol to dihydrotestosterone in prostate cancer. Cancer Res. 71, 1486–1496 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Mohler, J. L., Titus, M. A. & Wilson, E. M. Potential prostate cancer drug target: bioactivation of androstanediol by conversion to dihydrotestosterone. Clin. Cancer Res. 17, 5844–5849 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Fiandalo, M. V., Gewirth, D. T. & Mohler, J. L. Potential impact of combined inhibition of 3α-oxidoreductases and 5α-reductases on prostate cancer. Asian J. Urol. 6, 50–56 (2019).

    PubMed  Google Scholar 

  123. Barnard, M., Mostaghel, E. A., Auchus, R. J. & Storbeck, K. H. The role of adrenal derived androgens in castration resistant prostate cancer. J. Steroid Biochem. Mol. Biol. 197, 105506 (2020).

    CAS  PubMed  Google Scholar 

  124. Pouliot, F. et al. Extragonadal steroids contribute significantly to androgen receptor activity and development of castration resistance in recurrent prostate cancer after primary therapy. J. Urol. 203, 940–948 (2020).

    PubMed  Google Scholar 

  125. Rouleau, M. et al. Extensive alteration of androgen precursor levels after castration in prostate cancer patients and their association with active androgen level. J. Urol. https://doi.org/10.1097/JU.0000000000002923 (2022).

    Article  PubMed  Google Scholar 

  126. Waltering, K. K., Urbanucci, A. & Visakorpi, T. Androgen receptor (AR) aberrations in castration-resistant prostate cancer. Mol. Cell Endocrinol. 360, 38–43 (2012).

    CAS  PubMed  Google Scholar 

  127. Agoulnik, I. U. et al. Role of SRC-1 in the promotion of prostate cancer cell growth and tumor progression. Cancer Res. 65, 7959–7967 (2005).

    CAS  PubMed  Google Scholar 

  128. Agoulnik, I. U. et al. Androgens modulate expression of transcription intermediary factor 2, an androgen receptor coactivator whose expression level correlates with early biochemical recurrence in prostate cancer. Cancer Res. 66, 10594–10602 (2006).

    CAS  PubMed  Google Scholar 

  129. He, B. et al. GATA2 facilitates steroid receptor coactivator recruitment to the androgen receptor complex. Proc. Natl Acad. Sci. USA 111, 18261–18266 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Malik, R. et al. Targeting the MLL complex in castration-resistant prostate cancer. Nat. Med. 21, 344–352 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Xu, J., Wu, R. C. & O’Malley, B. W. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat. Rev. Cancer 9, 615–630 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Arora, V. K. et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 155, 1309–1322 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Baloch, H. M. et al. Recognition and treatment of adrenal insufficiency secondary to abiraterone: a case report and literature review. Oncology 97, 301–305 (2019).

    CAS  PubMed  Google Scholar 

  134. Grist, E. & Attard, G. The development of abiraterone acetate for castration-resistant prostate cancer. Urol. Oncol. 33, 289–294 (2015).

    CAS  PubMed  Google Scholar 

  135. Kach, J. et al. Selective glucocorticoid receptor modulators (SGRMs) delay castrate-resistant prostate cancer growth. Mol. Cancer Ther. 16, 1680–1692 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Rosette, C. et al. The dual androgen receptor and glucocorticoid receptor antagonist CB-03-10 as potential treatment for tumors that have acquired GR-mediated resistance to AR blockade. Mol. Cancer Ther. 19, 2256–2266 (2020).

    CAS  PubMed  Google Scholar 

  137. Serritella, A. V. et al. Phase I/II trial of enzalutamide and mifepristone, a glucocorticoid receptor antagonist, for metastatic castration-resistant prostate cancer. Clin. Cancer Res. 28, 1549–1559 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Shah, N. et al. Regulation of the glucocorticoid receptor via a BET-dependent enhancer drives antiandrogen resistance in prostate cancer. Elife https://doi.org/10.7554/eLife.27861 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Valle, S. & Sharifi, N. Targeting glucocorticoid metabolism in prostate cancer. Endocrinology https://doi.org/10.1210/endocr/bqab132 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Bluemn, E. G. et al. Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling. Cancer Cell 32, 474–489.e476 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Labrecque, M. P., Alumkal, J. J., Coleman, I. M., Nelson, P. S. & Morrissey, C. The heterogeneity of prostate cancers lacking AR activity will require diverse treatment approaches. Endocr. Relat. Cancer 28, T51–T66 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Beltran, H. & Demichelis, F. Therapy considerations in neuroendocrine prostate cancer: what next? Endocr. Relat. Cancer 28, T67–T78 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Xie, Y. C., Ning, S. Y. & Hu, J. P. Molecular mechanisms of neuroendocrine differentiation in prostate cancer progression. J. Cancer Res. Clin. Oncol. 148, 1813–1823 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Davies, A. H., Beltran, H. & Zoubeidi, A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat. Rev. Urol. 15, 271–286 (2018).

    CAS  PubMed  Google Scholar 

  145. Kanayama, M. & Luo, J. Delineating the molecular events underlying development of prostate cancer variants with neuroendocrine/small cell carcinoma characteristics. Int. J. Mol. Sci. https://doi.org/10.3390/ijms222312742 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Davies, A., Zoubeidi, A. & Selth, L. A. The epigenetic and transcriptional landscape of neuroendocrine prostate cancer. Endocr. Relat. Cancer 27, R35–R50 (2020).

    CAS  PubMed  Google Scholar 

  147. Chen, C. D. et al. Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 10, 33–39 (2004).

    PubMed  Google Scholar 

  148. Stone, K. R., Mickey, D. D., Wunderli, H., Mickey, G. H. & Paulson, D. F. Isolation of a human prostate carcinoma cell line (DU 145). Int. J. Cancer 21, 274–281 (1978).

    CAS  PubMed  Google Scholar 

  149. Mickey, D., Stone, K., Wunderli, H., Mickey, G. & Paulson, D. Characterization of a human prostate adenocarcinoma cell line (DU 145) as a monolayer culture and as a solid tumor in athymic mice. Prog. Clin. Biol. Res. 37, 67–84 (1980).

    CAS  PubMed  Google Scholar 

  150. Tilley, W. D., Wilson, C. M., Marcelli, M. & McPhaul, M. J. Androgen receptor gene-expression in human prostate carcinoma cell-lines. Cancer Res. 50, 5382–5386 (1990).

    CAS  PubMed  Google Scholar 

  151. Kaighn, M. E., Narayan, K. S., Ohnuki, Y., Lechner, J. F. & Jones, L. W. Establishment and characterization of a human prostatic-carcinoma cell-line (PC-3). Investig. Urol. 17, 16–23 (1979).

    CAS  Google Scholar 

  152. Edelstein, R. A. et al. Detection of human androgen receptor messenger-RNA expression abnormalities by competitive PCR. DNA Cell Biol. 13, 265–273 (1994).

    CAS  PubMed  Google Scholar 

  153. Horoszewicz, J. et al. The LNCaP cell line — a new model for studies on human prostatic carcinoma. Prog. Clin. Biol. Res. 37, 115–132 (1980).

    CAS  PubMed  Google Scholar 

  154. Ravery, V. et al. The use of estramustine phosphate in the modern management of advanced prostate cancer. BJU Int. 108, 1782–1786 (2011).

    CAS  PubMed  Google Scholar 

  155. Horoszewicz, J. S. et al. LNCaP model of human prostatic-carcinoma. Cancer Res. 43, 1809–1818 (1983).

    CAS  PubMed  Google Scholar 

  156. Namekawa, T., Ikeda, K., Horie-Inoue, K. & Inoue, S. Application of prostate cancer models for preclinical study: advantages and limitations of cell lines, patient-derived xenografts, and three-dimensional culture of patient-derived cells. Cells https://doi.org/10.3390/cells8010074 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Sobel, R. E. & Sadar, M. D. Cell lines used in prostate cancer research: a compendium of old and new lines — part 1. J. Urol. 173, 342–359 (2005).

    CAS  PubMed  Google Scholar 

  158. Wu, H. C. et al. Derivation of androgen-independent human LNCaP prostatic-cancer cell sublines — role of bone stromal cells. Int. J. Cancer 57, 406–412 (1994).

    CAS  PubMed  Google Scholar 

  159. Thalmann, G. N. et al. Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate-cancer. Cancer Res. 54, 2577–2581 (1994).

    CAS  PubMed  Google Scholar 

  160. Thalmann, G. N. et al. LNCaP progression model of human prostate cancer: androgen-independence and osseous metastasis. Prostate 44, 91–103 (2000).

    CAS  PubMed  Google Scholar 

  161. Pflug, B. R., Reiter, R. E. & Nelson, J. B. Caveolin expression is decreased following androgen deprivation in human prostate cancer cell lines. Prostate 40, 269–273 (1999).

    CAS  PubMed  Google Scholar 

  162. Zhu, Y. Z. et al. Role of androgen receptor splice variant-7 (AR-V7) in prostate cancer resistance to 2nd-generation androgen receptor signaling inhibitors. Oncogene 39, 6935–6949 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Hu, R. et al. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res. 72, 3457–3462 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Bishop, J. L. et al. PD-L1 is highly expressed in enzalutamide resistant prostate cancer. Oncotarget 6, 234–242 (2015).

    PubMed  Google Scholar 

  165. Pretlow, T. G. et al. Xenografts of primary human prostatic-carcinoma. J. Natl Cancer Inst. 85, 394–402 (1993).

    CAS  PubMed  Google Scholar 

  166. Wainstein, M. A. et al. CWR22 — androgen-dependent xenograft model derived from a primary human prostatic-carcinoma. Cancer Res. 54, 6049–6052 (1994).

    CAS  PubMed  Google Scholar 

  167. Nagabhushan, M. et al. CWR22: the first human prostate cancer xenograft with strongly androgen-dependent relapsed strains both in vivo and in soft agar. Cancer Res. 56, 3042–3046 (1996).

    CAS  PubMed  Google Scholar 

  168. Sramkoski, R. M. et al. A new human prostate carcinoma cell line, 22Rʊ1. Vitr. Cell. Dev. Biol. Anim. 35, 403–409 (1999).

    CAS  Google Scholar 

  169. Li, Y. M. et al. Intragenic rearrangement and altered RNA splicing of the androgen receptor in a cell-based model of prostate cancer progression. Cancer Res. 71, 2108–2117 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Tepper, C. G. et al. Characterization of a novel androgen receptor mutation in a relapsed CWR22 prostate cancer xenograft and cell line. Cancer Res. 62, 6606–6614 (2002).

    CAS  PubMed  Google Scholar 

  171. Dehm, S. M., Schmidt, L. J., Heemers, H. V., Vessella, R. L. & Tindall, D. J. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res. 68, 5469–5477 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Klein, K. A. et al. Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nat. Med. 3, 402–408 (1997).

    CAS  PubMed  Google Scholar 

  173. van-Bokhoven, A. et al. Molecular characterization of human prostate carcinoma cell lines. Prostate 57, 205–225 (2003).

    CAS  PubMed  Google Scholar 

  174. Gao, D. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176–187 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Korenchuk, S. et al. VCaP, a cell-based model system of human prostate cancer. Vivo 15, 163–168 (2001).

    CAS  Google Scholar 

  176. Liu, W. N. et al. Homozygous deletions and recurrent amplifications implicate new genes involved in prostate cancer. Neoplasia 10, 897–907 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Li, Y. et al. AR intragenic deletions linked to androgen receptor splice variant expression and activity in models of prostate cancer progression. Oncogene 31, 4759–4767 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Sharp, A. et al. Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer. J. Clin. Invest. 129, 192–208 (2019).

    PubMed  Google Scholar 

  179. Cao, Z. et al. Effects of resin or charcoal treatment on fetal bovine serum and bovine calf serum. Endocr. Res. 34, 101–108 (2009).

    PubMed  Google Scholar 

  180. Tu, C. et al. Proteomic analysis of charcoal-stripped fetal bovine serum reveals changes in the insulin-like growth factor signaling pathway. J. Proteome Res. 17, 2963–2977 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Shen, R. et al. Transdifferentiation of cultured human prostate cancer cells to a neuroendocrine cell phenotype in a hormone-depleted medium. Urologic Oncol. 3, 67–75 (1997).

    CAS  Google Scholar 

  182. Gabai, G., Mongillo, P., Giaretta, E. & Marinelli, L. Do dehydroepiandrosterone (DHEA) and its sulfate (DHEAS) play a role in the stress response in domestic animals. Front. Vet. Sci. 7, 588835 (2020).

    PubMed  PubMed Central  Google Scholar 

  183. van de Merbel, A. F., van der Horst, G. & van der Pluijm, G. Patient-derived tumour models for personalized therapeutics in urological cancers. Nat. Rev. Urol. 18, 33–45 (2021).

    PubMed  Google Scholar 

  184. Sailer, V. et al. Experimental in vitro, ex vivo and in vivo models in prostate cancer research. Nat. Rev. Urol. https://doi.org/10.1038/s41585-022-00677-z (2022).

    Article  PubMed  Google Scholar 

  185. Templeton, A. R. et al. Patient-derived explants as a precision medicine patient-proximal testing platform informing cancer management. Front. Oncol. 11, 767697 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Powley, I. R. et al. Patient-derived explants (PDEs) as a powerful preclinical platform for anti-cancer drug and biomarker discovery. Br. J. Cancer 122, 735–744 (2020).

    PubMed  PubMed Central  Google Scholar 

  187. Champagne, A. et al. A transcriptional biosensor to monitor single cancer cell therapeutic responses by bioluminescence microscopy. Theranostics 12, 474–492 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Neveu, B. et al. A PCA3 gene-based transcriptional amplification system targeting primary prostate cancer. Oncotarget 7, 1300–1310 (2016).

    PubMed  Google Scholar 

  189. Boibessot, C. et al. Using ex vivo culture to assess dynamic phenotype changes in human prostate macrophages following exposure to therapeutic drugs. Sci. Rep. 11, 19299 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Shafi, A. A. et al. Patient-derived models reveal impact of the tumor microenvironment on therapeutic response. Eur. Urol. Oncol. 1, 325–337 (2018).

    PubMed  PubMed Central  Google Scholar 

  191. Centenera, M. M. et al. A patient-derived explant (PDE) model of hormone-dependent cancer. Mol. Oncol. 12, 1608–1622 (2018).

    PubMed  PubMed Central  Google Scholar 

  192. Drost, J. et al. Organoid culture systems for prostate epithelial and cancer tissue. Nat. Protoc. 11, 347–358 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Frégeau-Proulx, L., Lacouture, A., Weidmann, C., Jobin, C. & Audet-Walsh, É. FACS-free isolation and purification protocol of mouse prostate epithelial cells for organoid primary culture. MethodsX 9, 101843 (2022).

    PubMed  PubMed Central  Google Scholar 

  194. Pamarthy, S. & Sabaawy, H. E. Patient derived organoids in prostate cancer: improving therapeutic efficacy in precision medicine. Mol. Cancer 20, 125 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Richards, Z. et al. Prostate stroma increases the viability and maintains the branching phenotype of human prostate organoids. iScience 12, 304–317 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. McCray, T. et al. Vitamin D sufficiency enhances differentiation of patient-derived prostate epithelial organoids. iScience 24, 101974 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Crowell, P. D. et al. Expansion of luminal progenitor cells in the aging mouse and human prostate. Cell Rep. 28, 1499–1510.e1496 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Karkampouna, S. et al. Patient-derived xenografts and organoids model therapy response in prostate cancer. Nat. Commun. 12, 1117 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Frégeau-Proulx, L. et al. Multiple metabolic pathways fuel the truncated tricarboxylic acid cycle of the prostate to sustain constant citrate production and secretion. Mol. Metab. 62, 101516 (2022).

    PubMed  PubMed Central  Google Scholar 

  200. Rea, D. et al. Mouse models in prostate cancer translational research: from xenograft to PDX. Biomed. Res. Int. 2016, 9750795 (2016).

    PubMed  PubMed Central  Google Scholar 

  201. Woo, X. Y. et al. Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts. Nat. Genet. 53, 86–99 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Zhang, W. et al. Ex vivo treatment of prostate tumor tissue recapitulates in vivo therapy response. Prostate 79, 390–402 (2019).

    CAS  PubMed  Google Scholar 

  203. Servant, R. et al. Prostate cancer patient-derived organoids: detailed outcome from a prospective cohort of 81 clinical specimens. J. Pathol. 254, 543–555 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. McPherson, S. J. et al. Estrogen receptor-β activated apoptosis in benign hyperplasia and cancer of the prostate is androgen independent and TNFα mediated. Proc. Natl Acad. Sci. USA 107, 3123–3128 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Karthaus, W. R. et al. Regenerative potential of prostate luminal cells revealed by single-cell analysis. Science 368, 497–505 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Sedelaar, J. P. M., Dalrymple, S. S. & Isaacs, J. T. Of mice and men-warning: intact versus castrated adult male mice as xenograft hosts are equivalent to hypogonadal versus abiraterone treated aging human males, respectively. Prostate 73, 1316–1325 (2013).

    PubMed Central  Google Scholar 

  207. Lin, D. et al. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 74, 1272–1283 (2014).

    CAS  PubMed  Google Scholar 

  208. Gleave, A. M., Ci, X., Lin, D. & Wang, Y. A synopsis of prostate organoid methodologies, applications, and limitations. Prostate 80, 518–526 (2020).

    PubMed  Google Scholar 

  209. Lange, T. et al. Development and characterization of a spontaneously metastatic patient-derived xenograft model of human prostate cancer. Sci. Rep. 8, 17535 (2018).

    PubMed  PubMed Central  Google Scholar 

  210. Dutil, J., Chen, Z. H., Monteiro, A. N., Teer, J. K. & Eschrich, S. A. An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines. Cancer Res. 79, 1263–1273 (2019).

    PubMed  PubMed Central  Google Scholar 

  211. Woods-Burnham, L. et al. The 22Rv1 prostate cancer cell line carries mixed genetic ancestry: implications for prostate cancer health disparities research using pre-clinical models. Prostate 77, 1601–1608 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Arenas-Gallo, C. et al. Race and prostate cancer: genomic landscape. Nat. Rev. Urol. 19, 547–561 (2022).

    PubMed  Google Scholar 

  213. Navone, N. M. et al. Establishment of two human prostate cancer cell lines derived from a single bone metastasis. Clin. Cancer Res. 3, 2493–2500 (1997).

    CAS  PubMed  Google Scholar 

  214. Theodore, S. et al. Establishment and characterization of a pair of non-malignant and malignant tumor derived cell lines from an African American prostate cancer patient. Int. J. Oncol. 37, 1477–1482 (2010).

    CAS  PubMed  Google Scholar 

  215. Nicolas, N. et al. African-American prostate normal and cancer cells for health disparities research. Adv. Exp. Med. Biol. 1164, 101–108 (2019).

    CAS  PubMed  Google Scholar 

  216. Okada, H. et al. Establishment of a prostatic small-cell carcinoma cell line (SO-MI). Prostate 56, 231–238 (2003).

    CAS  PubMed  Google Scholar 

  217. Okasho, K. et al. Establishment and characterization of a novel treatment-related neuroendocrine prostate cancer cell line KUCaP13. Cancer Sci. 112, 2781–2791 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Vlietstra, R. J., van Alewijk, D., Hermans, K. G. L., van Steenbrugge, G. J. & Trapman, J. Frequent inactivation of PTEN in prostate cancer cell lines and xenografts. Cancer Res. 58, 2720–2723 (1998).

    CAS  PubMed  Google Scholar 

  219. McMenamin, M. E. et al. Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res. 59, 4291–4296 (1999).

    CAS  PubMed  Google Scholar 

  220. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).

    CAS  PubMed  Google Scholar 

  221. Isaacs, W. B., Carter, B. S. & Ewing, C. M. Wild-type P53 suppresses growth of human prostate-cancer cells containing mutant P53 alleles. Cancer Res. 51, 4716–4720 (1991).

    CAS  PubMed  Google Scholar 

  222. Perner, S. et al. TMPRSS2: ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res. 66, 8337–8341 (2006).

    CAS  PubMed  Google Scholar 

  223. Steck, P. A. et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat. Genet. 15, 356–362 (1997).

    CAS  PubMed  Google Scholar 

  224. Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    CAS  PubMed  Google Scholar 

  225. El Sheikh, S. S., Domin, J., Abel, P., Stamp, G. & Lalani, E. N. Phosphorylation of both EGFR and ErbB2 is a reliable predictor of prostate cancer cell proliferation in response to EGF. Neoplasia 6, 846–853 (2004).

    CAS  PubMed  Google Scholar 

  226. Saramaki, O. R. et al. TMPRSS2: ERG fusion identifies a subgroup of prostate cancers with a favorable prognosis. Clin. Cancer Res. 14, 3395–3400 (2008).

    PubMed  Google Scholar 

  227. Whang, Y. E. et al. Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc. Natl Acad. Sci. USA 95, 5246–5250 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. van-Bokhoven, A., Varella-Garcia, M., Korch, C., Hessels, D. & Miller, G. J. Widely used prostate carcinoma cell lines share common origins. Prostate 47, 36–51 (2001).

    CAS  PubMed  Google Scholar 

  229. Jiang, X. N., Chen, S., Asara, J. M. & Balk, S. P. Phosphoinositide 3-kinase pathway activation in phosphate and tensin homolog (PTEN)-deficient prostate cancer cells is independent of receptor tyrosine kinases and mediated by the p110β and p110δ catalytic subunits. J. Biol. Chem. 285, 14980–14989 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Hodgson, M. C. et al. Decreased expression and androgen regulation of the tumor suppressor gene INPP4B in prostate cancer. Cancer Res. 71, 572–582 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Abida, W. et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc. Natl Acad. Sci. USA 116, 11428–11436 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Baca, S. C. et al. Punctuated evolution of prostate cancer genomes. Cell 153, 666–677 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Fraser, M. et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature 541, 359–364 (2017).

    CAS  PubMed  Google Scholar 

  234. Kumar, A. et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat. Med. 22, 369–378 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Gerhauser, C. et al. Molecular evolution of early-onset prostate cancer identifies molecular risk markers and clinical trajectories. Cancer Cell 34, 996–1011.e1018 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Granlund, K. L. et al. Hyperpolarized MRI of human prostate cancer reveals increased lactate with tumor grade driven by monocarboxylate transporter 1. Cell Metab. 31, 105–114.e103 (2020).

    CAS  PubMed  Google Scholar 

  237. Stopsack, K. H. et al. Oncogenic genomic alterations, clinical phenotypes, and outcomes in metastatic castration-sensitive prostate cancer. Clin. Cancer Res. 26, 3230–3238 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Nguyen, B. et al. Pan-cancer analysis of CDK12 alterations identifies a subset of prostate cancers with distinct genomic and clinical characteristics. Eur. Urol. 78, 671–679 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Beltran, H. et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat. Med. 22, 298–305 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Barbieri, C. E. et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet. 44, 685–689 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Hieronymus, H. et al. Copy number alteration burden predicts prostate cancer relapse. Proc. Natl Acad. Sci. USA 111, 11139–11144 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Armenia, J. et al. The long tail of oncogenic drivers in prostate cancer. Nat. Genet. 50, 645–651 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Abida, W. et al. Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. JCO Precis. Oncol. https://doi.org/10.1200/po.17.00029 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Ren, S. et al. Whole-genome and transcriptome sequencing of prostate cancer identify new genetic alterations driving disease progression. Eur. Urol. 73, 322–339 (2018).

    CAS  PubMed  Google Scholar 

  245. Stopsack, K. H. et al. Differences in prostate cancer genomes by self-reported race: contributions of genetic ancestry, modifiable cancer risk factors, and clinical factors. Clin. Cancer Res. 28, 318–326 (2022).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Laure Devine for English edition. In a spirit of synthesis, the authors could not reference all the relevant work and apologize if some are missing. EAW holds a Tier 2 Canada Research Chair from the CIHR on targeting metabolic vulnerabilities in hormonal-dependent cancers. FP holds an FRQS Senior clinician scientist scholarship.

Author information

Authors and Affiliations

Authors

Contributions

E.A.-W., L.G., C.L. and V.P. researched data for the article. All authors contributed substantially to discussion of the content. E.A.-W., L.G., C.L. and V.P. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Étienne Audet-Walsh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks D. Frigo; J. Luo, who co-reviewed with M. Kanayama; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

cBioPortal: https://www.cbioportal.org/

Count Me In: https://joincountmein.org

The Metastatic Prostate Cancer Project: https://mpcproject.org/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Germain, L., Lafront, C., Paquette, V. et al. Preclinical models of prostate cancer — modelling androgen dependency and castration resistance in vitro, ex vivo and in vivo. Nat Rev Urol 20, 480–493 (2023). https://doi.org/10.1038/s41585-023-00726-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-023-00726-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing